Apply for a Grant

stage indicator - apply for a grant

Write Your Research Plan

In this part, we give you detailed information about writing an effective Research Plan. We start with the importance and parameters of significance and innovation.

We then discuss how to focus the Research Plan, relying on the iterative process described in the Iterative Approach to Application Planning Checklist shown at Draft Specific Aims  and give you advice for filling out the forms.

You'll also learn the importance of having a well-organized, visually appealing application that avoids common missteps and the importance of preparing your just-in-time information early.

While this document is geared toward the basic research project grant, the R01, much of it is useful for other grant types.

Table of Contents

Research plan overview and your approach, craft a title, explain your aims, research strategy instructions, advice for a successful research strategy, graphics and video, significance, innovation, and approach, tracking for your budget, preliminary studies or progress report, referencing publications, review and finalize your research plan, abstract and narrative.

Your application's Research Plan has two sections:

  • Specific Aims —a one-page statement of your objectives for the project.
  • Research Strategy —a description of the rationale for your research and your experiments in 12 pages for an R01.

In your Specific Aims, you note the significance and innovation of your research; then list your two to three concrete objectives, your aims.

Your Research Strategy is the nuts and bolts of your application, where you describe your research rationale and the experiments you will conduct to accomplish each aim. Though how you organize it is largely up to you, NIH expects you to follow these guidelines.

  • Organize using bold headers or an outline or numbering system—or both—that you use consistently throughout.
  • Start each section with the appropriate header: Significance, Innovation, or Approach.
  • Organize the Approach section around your Specific Aims.

Format of Your Research Plan

To write the Research Plan, you don't need the application forms. Write the text in your word processor, turn it into a PDF file, and upload it into the application form when it's final.

Because NIH may return your application if it doesn't meet all requirements, be sure to follow the rules for font, page limits, and more. Read the instructions at NIH’s Format Attachments .

For an R01, the Research Strategy can be up to 12 pages, plus one page for Specific Aims. Don't pad other sections with information that belongs in the Research Plan. NIH is on the lookout and may return your application to you if you try to evade page limits.

Follow Examples

As you read this page, look at our Sample Applications and More  to see some of the different strategies successful PIs use to create an outstanding Research Plan.

Keeping It All In Sync

Writing in a logical sequence will save you time.

Information you put in the Research Plan affects just about every other application part. You'll need to keep everything in sync as your plans evolve during the writing phase.

It's best to consider your writing as an iterative process. As you develop and finalize your experiments, you will go back and check other parts of the application to make sure everything is in sync: the "who, what, when, where, and how (much money)" as well as look again at the scope of your plans.

In that vein, writing in a logical sequence is a good approach that will save you time. We suggest proceeding in the following order:

  • Create a provisional title.
  • Write a draft of your Specific Aims.
  • Start with your Significance and Innovation sections.
  • Then draft the Approach section considering the personnel and skills you'll need for each step.
  • Evaluate your Specific Aims and methods in light of your expected budget (for a new PI, it should be modest, probably under the $250,000 for NIH's modular budget).
  • As you design experiments, reevaluate your hypothesis, aims, and title to make sure they still reflect your plans.
  • Prepare your Abstract (a summary of your Specific Aims).
  • Complete the other forms.

Even the smaller sections of your application need to be well-organized and readable so reviewers can readily grasp the information. If writing is not your forte, get help.

To view writing strategies for successful applications, see our Sample Applications and More . There are many ways to create a great application, so explore your options.

Within the character limit, include the important information to distinguish your project within the research area, your project's goals, and the research problem.

Giving your project a title at the outset can help you stay focused and avoid a meandering Research Plan. So you may want to launch your writing by creating a well-defined title.

NIH gives you a 200 character limit, but don’t feel obliged to use all of that allotment. Instead, we advise you to keep the title as succinct as possible while including the important information to distinguish your project within the research area. Make your title reflect your project's goals, the problem your project addresses, and possibly your approach to studying it. Make your title specific: saying you are studying lymphocyte trafficking is not informative enough.

For examples of strong titles, see our Sample Applications and More .

After you write a preliminary title, check that

  • My title is specific, indicating at least the research area and the goals of my project.
  • It is 200 characters or less.
  • I use as simple language as possible.
  • I state the research problem and, possibly, my approach to studying it.
  • I use a different title for each of my applications. (Note: there are exceptions, for example, for a renewal—see Apply for Renewal  for details.)
  • My title has appropriate keywords.

Later you may want to change your initial title. That's fine—at this point, it's just an aid to keep your plans focused.

Since all your reviewers read your Specific Aims, you want to excite them about your project.

If testing your hypothesis is the destination for your research, your Research Plan is the map that takes you there.

You'll start by writing the smaller part, the Specific Aims. Think of the one-page Specific Aims as a capsule of your Research Plan. Since all your reviewers read your Specific Aims, you want to excite them about your project.

For more on crafting your Specific Aims, see Draft Specific Aims .

Write a Narrative

Use at least half the page to provide the rationale and significance of your planned research. A good way to start is with a sentence that states your project's goals.

For the rest of the narrative, you will describe the significance of your research, and give your rationale for choosing the project. In some cases, you may want to explain why you did not take an alternative route.

Then, briefly describe your aims, and show how they build on your preliminary studies and your previous research. State your hypothesis.

If it is likely your application will be reviewed by a study section with broad expertise, summarize the status of research in your field and explain how your project fits in.

In the narrative part of the Specific Aims of many outstanding applications, people also used their aims to

  • State the technologies they plan to use.
  • Note their expertise to do a specific task or that of collaborators.
  • Describe past accomplishments related to the project.
  • Describe preliminary studies and new and highly relevant findings in the field.
  • Explain their area's biology.
  • Show how the aims relate to one another.
  • Describe expected outcomes for each aim.
  • Explain how they plan to interpret data from the aim’s efforts.
  • Describe how to address potential pitfalls with contingency plans.

Depending on your situation, decide which items are important for you. For example, a new investigator would likely want to highlight preliminary data and qualifications to do the work.

Many people use bold or italics to emphasize items they want to bring to the reviewers' attention, such as the hypothesis or rationale.

Detail Your Aims

After the narrative, enter your aims as bold bullets, or stand-alone or run-on headers.

  • State your plans using strong verbs like identify, define, quantify, establish, determine.
  • Describe each aim in one to three sentences.
  • Consider adding bullets under each aim to refine your objectives.

How focused should your aims be? Look at the example below.

Spot the Sample

Read the Specific Aims of the Application from Drs. Li and Samulski , "Enhance AAV Liver Transduction with Capsid Immune Evasion."

  • Aim 1. Study the effect of adeno-associated virus (AAV) empty particles on AAV capsid antigen cross-presentation in vivo .
  • Aim 2. Investigate AAV capsid antigen presentation following administration of AAV mutants and/or proteasome inhibitors for enhanced liver transduction in vivo .
  • Aim 3. Isolate AAV chimeric capsids with human hepatocyte tropism and the capacity for cytotoxic T lymphocytes (CTL) evasion.

After finishing the draft Specific Aims, check that

  • I keep to the one-page limit.
  • Each of my two or three aims is a narrowly focused, concrete objective I can achieve during the grant.
  • They give a clear picture of how my project can generate knowledge that may improve human health.
  • They show my project's importance to science, how it addresses a critical research opportunity that can move my field forward.
  • My text states how my work is innovative.
  • I describe the biology to the extent needed for my reviewers.
  • I give a rationale for choosing the topic and approach.
  • I tie the project to my preliminary data and other new findings in the field.
  • I explicitly state my hypothesis and why testing it is important.
  • My aims can test my hypothesis and are logical.
  • I can design and lead the execution of two or three sets of experiments that will strive to accomplish each aim.
  • As much as possible, I use language that an educated person without expertise can understand.
  • My text has bullets, bolding, or headers so reviewers can easily spot my aims (and other key items).

For each element listed above, analyze your text and revise it until your Specific Aims hit all the key points you'd like to make.

After the list of aims, some people add a closing paragraph, emphasizing the significance of the work, their collaborators, or whatever else they want to focus reviewers' attention on.

Your Research Strategy is the bigger part of your application's Research Plan (the other part is the Specific Aims—discussed above.)

The Research Strategy is the nuts and bolts of your application, describing the rationale for your research and the experiments you will do to accomplish each aim. It is structured as follows:

  • Significance
  • You can either include this information as a subsection of Approach or integrate it into any or all of the three main sections.
  • If you do the latter, be sure to mark the information clearly, for example, with a bold subhead.
  • Possible other sections, for example, human subjects, vertebrate animals, select agents, and others (these do not count toward the page limit).

Though how you organize your application is largely up to you, NIH does want you to follow these guidelines:

  • Add bold headers or an outlining or numbering system—or both—that you use consistently throughout.
  • Start each of the Research Strategy's sections with a header: Significance, Innovation, and Approach.

For an R01, the Research Strategy is limited to 12 pages for the three main sections and the preliminary studies only. Other items are not included in the page limit.

Find instructions for R01s in the SF 424 Application Guide—go to NIH's SF 424 (R&R) Application and Electronic Submission Information for the generic SF 424 Application Guide or find it in your notice of funding opportunity (NOFO).

For most applications, you need to address Rigor and Reproducibility by describing the experimental design and methods you propose and how they will achieve robust and unbiased results. The requirement applies to research grant, career development, fellowship, and training applications.

If you're responding to an institute-specific program announcement (PA) (not a parent program announcement) or a request for applications (RFA), check the NIH Guide notice, which has additional information you need. Should it differ from the NOFO, go with the NIH Guide .

Also note that your application must meet the initiative's objectives and special requirements. NIAID program staff will check your application, and if it is not responsive to the announcement, your application will be returned to you without a review.

When writing your Research Strategy, your goal is to present a well-organized, visually appealing, and readable description of your proposed project. That means your writing should be streamlined and organized so your reviewers can readily grasp the information. If writing is not your forte, get help.

There are many ways to create an outstanding Research Plan, so explore your options.

What Success Looks Like

Your application's Research Plan is the map that shows your reviewers how you plan to test your hypothesis.

It not only lays out your experiments and expected outcomes, but must also convince your reviewers of your likely success by allaying any doubts that may cross their minds that you will be able to conduct the research.

Notice in the sample applications how the writing keeps reviewers' eyes on the ball by bringing them back to the main points the PIs want to make. Write yourself an insurance policy against human fallibility: if it's a key point, repeat it, then repeat it again.

The Big Three

So as you write, put the big picture squarely in your sights. When reviewers read your application, they'll look for the answers to three basic questions:

  • Can your research move your field forward?
  • Is the field important—will progress make a difference to human health?
  • Can you and your team carry out the work?

Add Emphasis

Savvy PIs create opportunities to drive their main points home. They don't stop at the Significance section to emphasize their project's importance, and they look beyond their biosketches to highlight their team's expertise.

Don't take a chance your reviewer will gloss over that one critical sentence buried somewhere in your Research Strategy or elsewhere. Write yourself an insurance policy against human fallibility: if it's a key point, repeat it, then repeat it again.

Add more emphasis by putting the text in bold, or bold italics (in the modern age, we skip underlining—it's for typewriters).

Here are more strategies from our successful PIs:

  • While describing a method in the Approach section, they state their or collaborators' experience with it.
  • They point out that they have access to a necessary piece of equipment.
  • When explaining their field and the status of current research, they weave in their own work and their preliminary data.
  • They delve into the biology of the area to make sure reviewers will grasp the importance of their research and understand their field and how their work fits into it.

You can see many of these principles at work in the Approach section of the Application from Dr. William Faubion , "Inflammatory cascades disrupt Treg function through epigenetic mechanisms."

  • Reviewers felt that the experiments described for Aim 1 will yield clear results.
  • The plans to translate those findings to gene targets of relevance are well outlined and focused.
  • He ties his proposed experiments to the larger picture, including past research and strong preliminary data for the current application. 

Anticipate Reviewer Questions

Our applicants not only wrote with their reviewers in mind they seemed to anticipate their questions. You may think: how can I anticipate all the questions people may have? Of course you can't, but there are some basic items (in addition to the "big three" listed above) that will surely be on your reviewers' minds:

  • Will the investigators be able to get the work done within the project period, or is the proposed work over ambitious?
  • Did the PI describe potential pitfalls and possible alternatives?
  • Will the experiments generate meaningful data?
  • Could the resulting data prove the hypothesis?
  • Are others already doing the work, or has it been already completed?

Address these questions; then spend time thinking about more potential issues specific to you and your research—and address those too.

For applications, a picture can truly be worth a thousand words. Graphics can illustrate complex information in a small space and add visual interest to your application.

Look at our sample applications to see how the investigators included schematics, tables, illustrations, graphs, and other types of graphics to enhance their applications.

Consider adding a timetable or flowchart to illustrate your experimental plan, including decision trees with alternative experimental pathways to help your reviewers understand your plans.

Plan Ahead for Video

If you plan to send one or more videos, you'll need to meet certain standards and include key information in your Research Strategy now.

To present some concepts or demonstrations, video may enhance your application beyond what graphics alone can achieve. However, you can't count on all reviewers being able to see or hear video, so you'll want to be strategic in how you incorporate it into your application.

Be reviewer-friendly. Help your cause by taking the following steps:

  • Caption any narration in the video.
  • Choose evocative still images from your video to accompany your summary.
  • Write your summary of the video carefully so the text would make sense even without the video.

In addition to those considerations, create your videos to fit NIH’s technical requirements. Learn more in the SF 424 Form Instructions .

Next, as you write your Research Strategy, include key images from the video and a brief description.

Then, state in your cover letter that you plan to send video later. (Don't attach your files to the application.)

After you apply and get assignment information from the Commons, ask your assigned scientific review officer (SRO) how your business official should send the files. Your video files are due at least one month before the peer review meeting.

Know Your Audience's Perspective

The primary audience for your application is your peer review group. Learn how to write for the reviewers who are experts in your field and those who are experts in other fields by reading Know Your Audience .

Be Organized: A B C or 1 2 3?

In the top-notch applications we reviewed, organization ruled but followed few rules. While you want to be organized, how you go about it is up to you.

Nevertheless, here are some principles to follow:

  • Start each of the Research Strategy's sections with a header: Significance, Innovation, and Approach—this you must do.

The Research Strategy's page limit—12 for R01s—is for the three main parts: Significance, Innovation, and Approach and your preliminary studies (or a progress report if you're renewing your grant). Other sections, for example, research animals or select agents, do not have a page limit.

Although you will emphasize your project's significance throughout the application, the Significance section should give the most details. Don't skimp—the farther removed your reviewers are from your field, the more information you'll need to provide on basic biology, importance of the area, research opportunities, and new findings.

When you describe your project's significance, put it in the context of 1) the state of your field, 2) your long-term research plans, and 3) your preliminary data.

In our Sample Applications , you can see that both investigators and reviewers made a case for the importance of the research to improving human health as well as to the scientific field.

Look at the Significance section of the Application from Dr. Mengxi Jiang , "Intersection of polyomavirus infection and host cellular responses," to see how these elements combine to make a strong case for significance.

  • Dr. Jiang starts with a summary of the field of polyomavirus research, identifying critical knowledge gaps in the field.
  • The application ties the lab's previous discoveries and new research plans to filling those gaps, establishing the significance with context.
  • Note the use of formatting, whitespace, and sectioning to highlight key points and make it easier for reviewers to read the text.

After conveying the significance of the research in several parts of the application, check that

  • In the Significance section, I describe the importance of my hypothesis to the field (especially if my reviewers are not in it) and human disease.
  • I also point out the project's significance throughout the application.
  • The application shows that I am aware of opportunities, gaps, roadblocks, and research underway in my field.
  • I state how my research will advance my field, highlighting knowledge gaps and showing how my project fills one or more of them.
  • Based on my scan of the review committee roster, I determine whether I cannot assume my reviewers will know my field and provide some information on basic biology, the importance of the area, knowledge gaps, and new findings.

If you are either a new PI or entering a new area: be cautious about seeming too innovative. Not only is innovation just one of five review criteria, but there might be a paradigm shift in your area of science. A reviewer may take a challenge to the status quo as a challenge to his or her world view.

When you look at our sample applications, you see that both the new and experienced investigators are not generally shifting paradigms. They are using new approaches or models, working in new areas, or testing innovative ideas.

After finishing the draft innovation section, check that

  • I show how my proposed research is new and unique, e.g., explores new scientific avenues, has a novel hypothesis, will create new knowledge.
  • Most likely, I explain how my project's research can refine, improve, or propose a new application of an existing concept or method.
  • Make a very strong case for challenging the existing paradigm.
  • Have data to support the innovative approach.
  • Have strong evidence that I can do the work.

In your Approach, you spell out a few sets of experiments to address each aim. As we noted above, it's a good idea to restate the key points you've made about your project's significance, its place in your field, and your long-term goals.

You're probably wondering how much detail to include.

If you look at our sample applications as a guide, you can see very different approaches. Though people generally used less detail than you'd see in a scientific paper, they do include some experimental detail.

Expect your assigned reviewers to scrutinize your approach: they will want to know what you plan to do and how you plan to do it.

NIH data show that of the peer review criteria, approach has the highest correlation with the overall impact score.

Look at the Application from Dr. Mengxi Jiang , "Intersection of polyomavirus infection and host cellular responses," to see how a new investigator handled the Approach section.

For an example of an experienced investigator's well-received Approach section, see the Application from Dr. William Faubion , "Inflammatory cascades disrupt Treg function through epigenetic mechanisms."

Especially if you are a new investigator, you need enough detail to convince reviewers that you understand what you are undertaking and can handle the method.

  • Cite a publication that shows you can handle the method where you can, but give more details if you and your team don't have a proven record using the method—and state explicitly why you think you will succeed.
  • If space is short, you could also focus on experiments that highlight your expertise or are especially interesting. For experiments that are pedestrian or contracted out, just list the method.

Be sure to lay out a plan for alternative experiments and approaches in case you get negative or surprising results. Show reviewers you have a plan for spending the four or five years you will be funded no matter where the experiments lead.

See the Application from Drs. Li and Samulski , "Enhance AAV Liver Transduction with Capsid Immune Evasion," for a strong Approach section covering potential. As an example, see section C.1.3.'s alternative approaches.

Here are some pointers for organizing your Approach:

  • Enter a bold header for each Specific Aim.
  • Under each aim, describe the first set of experiments.
  • If you get result X, you will follow pathway X; if you get result Y, you will follow pathway Y.
  • Consider illustrating this with a flowchart.

Trim the fat—omit all information not needed to make your case. If you try to wow reviewers with your knowledge, they'll find flaws and penalize you heavily. Don't give them ammunition by including anything you don't need.

As you design your experiments, keep a running tab of the following essential data on a separate piece of paper:

  • Who. A list of people who will help you for your Key Personnel section later.
  • What. A list of equipment and supplies for the experiments you plan.
  • Time. Notes on how long each step takes. Timing directly affects your budget as well as how many Specific Aims you can realistically achieve.

Jotting this information down will help you Create a Budget and complete other sections later.

After finishing a draft Approach section, check that

  • I include enough background and preliminary data to give reviewers the context and significance of my plans.
  • They can test the hypothesis (or hypotheses).
  • I show alternative experiments and approaches in case I get negative or surprising results.
  • My experiments can yield meaningful data to test my hypothesis (or hypotheses).
  • As a new investigator, I include enough detail to convince reviewers I understand and can handle a method. I reviewed the sample applications to see how much detail to use.
  • If I or my team has experience with a method, I cite it; otherwise I include enough details to convince reviewers we can handle it.
  • I describe the results I anticipate and their implications.
  • I omit all information not needed to state my case.
  • I keep track of and explain who will do what, what they will do, when and where they will do it, how long it will take, and how much money it will cost.
  • My timeline shows when I expect to complete my aims.

If you are applying for a new application, include preliminary studies; for a renewal or a revision (a competing supplement to an existing grant), prepare a progress report instead.

Describing Preliminary Studies

Your preliminary studies show that you can handle the methods and interpret results. Here's where you build reviewer confidence that you are headed in the right direction by pursuing research that builds on your accomplishments.

Reviewers use your preliminary studies together with the biosketches to assess the investigator review criterion, which reflects the competence of the research team.

Give alternative interpretations to your data to show reviewers you've thought through problems in-depth and are prepared to meet future challenges. If you don't do this, the reviewers will!

Though you may include other people's publications, focus on your preliminary data or unpublished data from your lab and the labs of your team members as much as you can.

As we noted above, you can put your preliminary data anywhere in the Research Strategy that you feel is appropriate, but just make sure your reviewers will be able to distinguish it. Alternatively, you can create a separate section with its own header.

Including a Progress Report

If you are applying for a renewal or a revision (a competing supplement to an existing grant), prepare a progress report instead of preliminary studies.

Create a header so your program officer can easily find it and include the following information:

  • Project period beginning and end dates.
  • Summary of the importance of your findings in relation to your Specific Aims.
  • Account of published and unpublished results, highlighting your progress toward achieving your Specific Aims.

Note: if you submit a renewal application before the due date of your progress report, you do not need to submit a separate progress report for your grant. However, you will need to submit it, if your renewal is not funded.

After finishing the draft, check that

  • I interpret my preliminary results critically.
  • There is enough information to show I know what I'm talking about.
  • If my project is complex, I give more preliminary studies.
  • I show how my previous experience prepared me for the new project.
  • It's clear which data are mine and which are not.

References show your breadth of knowledge of the field. If you leave out an important work, reviewers may assume you're not aware of it.

Throughout your application, you will reference all relevant publications for the concepts underlying your research and your methods.

Read more about your Bibliography and References Cited at Add a Bibliography and Appendix .

  • Throughout my application I cite the literature thoroughly but not excessively, adding citations for all references important to my work.
  • I cite all papers important to my field, including those from potential reviewers.
  • I include fewer than 100 citations (if possible).
  • My Bibliography and References Cited form lists all my references.
  • I refer to unpublished work, including information I learned through personal contacts.
  • If I do not describe a method, I add a reference to the literature.

Look over what you've written with a critical eye of a reviewer to identify potential questions or weak spots.

Enlist others to do that too—they can look at your application with a fresh eye. Include people who aren't familiar with your research to make sure you can get your point across to someone outside your field.

As you finalize the details of your Research Strategy, you will also need to return to your Specific Aims to see if you must revise. See Draft Specific Aims .

After you finish your Research Plan, you are ready to write your Abstract (called Project Summary/Abstract) and Project Narrative, which are attachments to the Other Project Information form.

These sections may be small, but they're important.

  • All your peer reviewers read your Abstract and narrative.
  • Staff and automated systems in NIH's Center for Scientific Review use them to decide where to assign your application, even if you requested an institute and study section.
  • They show the importance and health relevance of your research to members of the public and Congress who are interested in what NIH is funding with taxpayer dollars.

Be sure to omit confidential or proprietary information in these sections! When your application is funded, NIH enters your title and Abstract in the public RePORTER database.

Think brief and simple: to the extent that you can, write these sections in lay language, and include appropriate keywords, e.g., immunotherapy, genetic risk factors.

As NIH referral officers use these parts to direct your application to an institute for possible funding, your description can influence the choice they make.

Write a succinct summary of your project that both a scientist and a lay person can understand (to the extent that you can).

  • Use your Specific Aims as a template—shorten it and simplify the language.
  • In the first sentence, state the significance of your research to your field and relevance to NIAID's mission: to better understand, treat, and prevent infectious, immunologic, and allergic diseases.
  • Next state your hypothesis and the innovative potential of your research.
  • Then list and briefly describe your Specific Aims and long-term objectives.

In your Project Narrative, you have only a few sentences to drive home your project's potential to improve public health.

Check out these effective Abstracts and Narratives from our R01  Sample Applications :

  • Application from Dr. Mengxi Jiang , "Intersection of polyomavirus infection and host cellular responses"
  • Application from Dr. William Faubion , "Inflammatory cascades disrupt Treg function through epigenetic mechanisms"
  • My Project Summary/Abstract and Project Narrative (and title) are accessible to a broad audience.
  • They describe the significance of my research to my field and state my hypothesis, my aims, and the innovative potential of my research.
  • My narrative describes my project's potential to improve public health.
  • I do not include any confidential or proprietary information.
  • I do not use graphs or images.
  • My Abstract has keywords that are appropriate and distinct enough to avoid confusion with other terms.
  • My title is specific and informative.

Previous Step

Have questions.

A program officer in your area of science can give you application advice, NIAID's perspective on your research, and confirmation that NIAID will accept your application.

Find contacts and instructions at When to Contact an NIAID Program Officer .

FLEET LIBRARY | Research Guides

Rhode island school of design, create a research plan: research plan.

  • Research Plan
  • Literature Review
  • Ulrich's Global Serials Directory
  • Related Guides

A research plan is a framework that shows how you intend to approach your topic. The plan can take many forms: a written outline, a narrative, a visual/concept map or timeline. It's a document that will change and develop as you conduct your research. Components of a research plan

1. Research conceptualization - introduces your research question

2. Research methodology - describes your approach to the research question

3. Literature review, critical evaluation and synthesis - systematic approach to locating,

    reviewing and evaluating the work (text, exhibitions, critiques, etc) relating to your topic

4. Communication - geared toward an intended audience, shows evidence of your inquiry

Research conceptualization refers to the ability to identify specific research questions, problems or opportunities that are worthy of inquiry. Research conceptualization also includes the skills and discipline that go beyond the initial moment of conception, and which enable the researcher to formulate and develop an idea into something researchable ( Newbury 373).

Research methodology refers to the knowledge and skills required to select and apply appropriate methods to carry through the research project ( Newbury 374) .

Method describes a single mode of proceeding; methodology describes the overall process.

Method - a way of doing anything especially according to a defined and regular plan; a mode of procedure in any activity

Methodology - the study of the direction and implications of empirical research, or the sustainability of techniques employed in it; a method or body of methods used in a particular field of study or activity *Browse a list of research methodology books  or this guide on Art & Design Research

Literature Review, critical evaluation & synthesis

A literature review is a systematic approach to locating, reviewing, and evaluating the published work and work in progress of scholars, researchers, and practitioners on a given topic.

Critical evaluation and synthesis is the ability to handle (or process) existing sources. It includes knowledge of the sources of literature and contextual research field within which the person is working ( Newbury 373).

Literature reviews are done for many reasons and situations. Here's a short list:

Sources to consult while conducting a literature review:

Online catalogs of local, regional, national, and special libraries

meta-catalogs such as worldcat , Art Discovery Group , europeana , world digital library or RIBA

subject-specific online article databases (such as the Avery Index, JSTOR, Project Muse)

digital institutional repositories such as Digital Commons @RISD ; see Registry of Open Access Repositories

Open Access Resources recommended by RISD Research LIbrarians

works cited in scholarly books and articles

print bibliographies

the internet-locate major nonprofit, research institutes, museum, university, and government websites

search google scholar to locate grey literature & referenced citations

trade and scholarly publishers

fellow scholars and peers

Communication                              

Communication refers to the ability to

  • structure a coherent line of inquiry
  • communicate your findings to your intended audience
  • make skilled use of visual material to express ideas for presentations, writing, and the creation of exhibitions ( Newbury 374)

Research plan framework: Newbury, Darren. "Research Training in the Creative Arts and Design." The Routledge Companion to Research in the Arts . Ed. Michael Biggs and Henrik Karlsson. New York: Routledge, 2010. 368-87. Print.

About the author

Except where otherwise noted, this guide is subject to a Creative Commons Attribution license

source document

  Routledge Companion to Research in the Arts

  • Next: Literature Review >>
  • Last Updated: Sep 20, 2023 5:05 PM
  • URL: https://risd.libguides.com/researchplan

Have a language expert improve your writing

Run a free plagiarism check in 10 minutes, generate accurate citations for free.

  • Knowledge Base
  • Starting the research process
  • How to Write a Research Proposal | Examples & Templates

How to Write a Research Proposal | Examples & Templates

Published on October 12, 2022 by Shona McCombes and Tegan George. Revised on November 21, 2023.

Structure of a research proposal

A research proposal describes what you will investigate, why it’s important, and how you will conduct your research.

The format of a research proposal varies between fields, but most proposals will contain at least these elements:

Introduction

Literature review.

  • Research design

Reference list

While the sections may vary, the overall objective is always the same. A research proposal serves as a blueprint and guide for your research plan, helping you get organized and feel confident in the path forward you choose to take.

Table of contents

Research proposal purpose, research proposal examples, research design and methods, contribution to knowledge, research schedule, other interesting articles, frequently asked questions about research proposals.

Academics often have to write research proposals to get funding for their projects. As a student, you might have to write a research proposal as part of a grad school application , or prior to starting your thesis or dissertation .

In addition to helping you figure out what your research can look like, a proposal can also serve to demonstrate why your project is worth pursuing to a funder, educational institution, or supervisor.

Research proposal length

The length of a research proposal can vary quite a bit. A bachelor’s or master’s thesis proposal can be just a few pages, while proposals for PhD dissertations or research funding are usually much longer and more detailed. Your supervisor can help you determine the best length for your work.

One trick to get started is to think of your proposal’s structure as a shorter version of your thesis or dissertation , only without the results , conclusion and discussion sections.

Download our research proposal template

Here's why students love Scribbr's proofreading services

Discover proofreading & editing

Writing a research proposal can be quite challenging, but a good starting point could be to look at some examples. We’ve included a few for you below.

  • Example research proposal #1: “A Conceptual Framework for Scheduling Constraint Management”
  • Example research proposal #2: “Medical Students as Mediators of Change in Tobacco Use”

Like your dissertation or thesis, the proposal will usually have a title page that includes:

  • The proposed title of your project
  • Your supervisor’s name
  • Your institution and department

The first part of your proposal is the initial pitch for your project. Make sure it succinctly explains what you want to do and why.

Your introduction should:

  • Introduce your topic
  • Give necessary background and context
  • Outline your  problem statement  and research questions

To guide your introduction , include information about:

  • Who could have an interest in the topic (e.g., scientists, policymakers)
  • How much is already known about the topic
  • What is missing from this current knowledge
  • What new insights your research will contribute
  • Why you believe this research is worth doing

The only proofreading tool specialized in correcting academic writing - try for free!

The academic proofreading tool has been trained on 1000s of academic texts and by native English editors. Making it the most accurate and reliable proofreading tool for students.

research plan of science

Try for free

As you get started, it’s important to demonstrate that you’re familiar with the most important research on your topic. A strong literature review  shows your reader that your project has a solid foundation in existing knowledge or theory. It also shows that you’re not simply repeating what other people have already done or said, but rather using existing research as a jumping-off point for your own.

In this section, share exactly how your project will contribute to ongoing conversations in the field by:

  • Comparing and contrasting the main theories, methods, and debates
  • Examining the strengths and weaknesses of different approaches
  • Explaining how will you build on, challenge, or synthesize prior scholarship

Following the literature review, restate your main  objectives . This brings the focus back to your own project. Next, your research design or methodology section will describe your overall approach, and the practical steps you will take to answer your research questions.

To finish your proposal on a strong note, explore the potential implications of your research for your field. Emphasize again what you aim to contribute and why it matters.

For example, your results might have implications for:

  • Improving best practices
  • Informing policymaking decisions
  • Strengthening a theory or model
  • Challenging popular or scientific beliefs
  • Creating a basis for future research

Last but not least, your research proposal must include correct citations for every source you have used, compiled in a reference list . To create citations quickly and easily, you can use our free APA citation generator .

Some institutions or funders require a detailed timeline of the project, asking you to forecast what you will do at each stage and how long it may take. While not always required, be sure to check the requirements of your project.

Here’s an example schedule to help you get started. You can also download a template at the button below.

Download our research schedule template

If you are applying for research funding, chances are you will have to include a detailed budget. This shows your estimates of how much each part of your project will cost.

Make sure to check what type of costs the funding body will agree to cover. For each item, include:

  • Cost : exactly how much money do you need?
  • Justification : why is this cost necessary to complete the research?
  • Source : how did you calculate the amount?

To determine your budget, think about:

  • Travel costs : do you need to go somewhere to collect your data? How will you get there, and how much time will you need? What will you do there (e.g., interviews, archival research)?
  • Materials : do you need access to any tools or technologies?
  • Help : do you need to hire any research assistants for the project? What will they do, and how much will you pay them?

If you want to know more about the research process , methodology , research bias , or statistics , make sure to check out some of our other articles with explanations and examples.

Methodology

  • Sampling methods
  • Simple random sampling
  • Stratified sampling
  • Cluster sampling
  • Likert scales
  • Reproducibility

 Statistics

  • Null hypothesis
  • Statistical power
  • Probability distribution
  • Effect size
  • Poisson distribution

Research bias

  • Optimism bias
  • Cognitive bias
  • Implicit bias
  • Hawthorne effect
  • Anchoring bias
  • Explicit bias

Once you’ve decided on your research objectives , you need to explain them in your paper, at the end of your problem statement .

Keep your research objectives clear and concise, and use appropriate verbs to accurately convey the work that you will carry out for each one.

I will compare …

A research aim is a broad statement indicating the general purpose of your research project. It should appear in your introduction at the end of your problem statement , before your research objectives.

Research objectives are more specific than your research aim. They indicate the specific ways you’ll address the overarching aim.

A PhD, which is short for philosophiae doctor (doctor of philosophy in Latin), is the highest university degree that can be obtained. In a PhD, students spend 3–5 years writing a dissertation , which aims to make a significant, original contribution to current knowledge.

A PhD is intended to prepare students for a career as a researcher, whether that be in academia, the public sector, or the private sector.

A master’s is a 1- or 2-year graduate degree that can prepare you for a variety of careers.

All master’s involve graduate-level coursework. Some are research-intensive and intend to prepare students for further study in a PhD; these usually require their students to write a master’s thesis . Others focus on professional training for a specific career.

Critical thinking refers to the ability to evaluate information and to be aware of biases or assumptions, including your own.

Like information literacy , it involves evaluating arguments, identifying and solving problems in an objective and systematic way, and clearly communicating your ideas.

The best way to remember the difference between a research plan and a research proposal is that they have fundamentally different audiences. A research plan helps you, the researcher, organize your thoughts. On the other hand, a dissertation proposal or research proposal aims to convince others (e.g., a supervisor, a funding body, or a dissertation committee) that your research topic is relevant and worthy of being conducted.

Cite this Scribbr article

If you want to cite this source, you can copy and paste the citation or click the “Cite this Scribbr article” button to automatically add the citation to our free Citation Generator.

McCombes, S. & George, T. (2023, November 21). How to Write a Research Proposal | Examples & Templates. Scribbr. Retrieved February 18, 2024, from https://www.scribbr.com/research-process/research-proposal/

Is this article helpful?

Shona McCombes

Shona McCombes

Other students also liked, how to write a problem statement | guide & examples, writing strong research questions | criteria & examples, how to write a literature review | guide, examples, & templates, what is your plagiarism score.

Creating a Research Plan

Creating a Research Plan for a Science Project Before starting work on a science project, a research plan should be created. While many researchers merely do this “in their head”, it should be formally contained within a document. The research plan describes many aspects of the project. It will help both the researchers and mentors understand the overall approach that is planned for the project. The contents of this web page should serve as a guide for creating a research plan.

A written research plan should contain a description of the following. 1. The goals of the project 2. The hypothesis 3. The factors that will be studied 4. The responses (results) that will be observed 5. How the data will be analyzed and interpreted 6. The materials and equipment that will be used 7. The experimental methods (procedure) that will be used 8. The facilities where the work will be done 9. How the research plan might change 10. Summary

11. A bibliography that includes at least five major references.

NOTE : Steps 1-5 are focused on setting up the overall ideas and objectives. Steps 6-8 are focused on the specifics of the experimentation, such as what, how, and where the experimentation will be performed. Steps 9-11 are important for anyone looking over the project, but are particularly important if you are applying for pre-approval because it gives those reviewing the application a better sense of how well the planning was done.

The Goals of the Project A description of the goals of the project should be a general discussion of the project. What will be studied? Why is it of interest? What do you hope to learn? This will set the stage for the rest of the research plan.

The Hypothesis Here is where the scientific hypothesis is laid out. A proposal is made about the factors to be studied and how they might affect the responses of interest. For example, a hypothesis about the growth of maple tree saplings might start with: “We believe that recently-sprouted maple tree saplings will have their growth stunted by excessive exposure to ultraviolet light.” From here, the hypothesis is discussed in enough detail for the reader to understand exactly what is being proposed about the state of the natural world that you hope to either prove or disprove.

The Factors That Will Be Studied In this section, you will spell out which factors will be studied in your research project as well as those that will be held constant. The factors that you study are the ones that you vary in a controlled fashion in order to explore the hypothesis. The factors that are held constant are factors that you do not want to affect the outcome of your experiment. A perfect example of these two kinds of factors at work would be growing plants in a greenhouse. The factors that are varied (for example, adding nutrients to the soil) will have the best chance of being the ones that affect the plants’ growth. By using a greenhouse, the factors that you do not wish to affect the outcome of your experiment (such as exposure of the plants to wind, rain, or animals) will not have a chance to affect the outcome.

The Responses (Results) That Will Be Observed The response is the result you observe as the output of your experiments. An observation may be qualitative (for example, a change of color) or quantitative (for example, a change in height determined by a measurement). In a chemical experiment the product of the reaction is the response. A botanical experiment might have the change in height of the plant or the number of leaves on the plant at the end of the growing period as the response. Mention should be made if you plan to get assistance in measuring your response by using an outside expert in the field of study.

How the Data Will Be Analyzed and Interpreted This section should discuss how the responses (results) will be treated in order to make conclusions about your work. How will the data be compared in order to make a conclusion? Will an average response be calculated? Standard deviation? Will a visual examination of the experiments be used as the basis of the data analysis? Include any details that will help the reader understand how the responses that were observed will be turned into understandable conclusions about your project.

The Materials and Equipment That Will Be Used In this part, the materials (expendables) and equipment that will be used for the science project are discussed. Will the materials be collected from nature? Will they be purchased from a scientific supply house? Will you use special glassware that is provided by your school? Describe the materials and equipment in enough detail so that someone can understand how they will be used in your science project.

The Experimental Methods (Procedure) That Will Be Used This section will cover how you will carry out your experiments. You will describe the methods (procedures) that you will use during your experiments. For example, a chemistry project might involve running a reaction and measuring the yield of a chemical that you make. The description would include how the chemical reaction will be run in special glassware and how the work up will isolate the product. You would also describe how the yield will be measured, such as weighing the resultant product on a balance. At the end of this section of the research plan, the reader should understand the general work flow of your experiments and how they will be run.

The Facilities Where the Work Will be Done Describe where the experiments will be done. Your home? Your school? A special laboratory? Give enough detail for the reader to understand where you will work on your science project.

How the Research Plan Might Change A research plan is just that, a plan! Plans don’t always proceed exactly as you envisioned them. If you have thought about changes that might need to be made as you are running your experiments, mention them here. This will indicate that you have thought about your work in great depth and are prepared to adjust accordingly.

Summary For this section, provide a general summary of your research plan. Tell the reader what you hope to accomplish and how you will do it.

Bibliography

Provide at least five major references that relate to the project.  This helps reviewers to understand better the depth of research that has been done in preparation for doing the research project.

2023 Fair results!

What a great fair!  The 2023 NHSEE fair was held on March 16, and we’re already looking forward to the 2024 fair – we hope you are too.

Start thinking of an amazing project, how you can help a student with one, or how you can help the NHSEE 2024 fair. Judge, volunteer, sponsor? Let us know!

See the results here - Who won? We are ISEF Affiliated! Mentors Available -->

The 2024 NHSEE will be at NHTI on March 14, 2024. Get your best project ideas ready and start working on your projects! If you need help with forms and such, check here .

Our Sponsors

research plan of science

The Classroom | Empowering Students in Their College Journey

How to Write a Research Plan for a Science Project

How to Make a Rough Draft on Science Projects

How to Make a Rough Draft on Science Projects

A research plan outlines your proposed science fair project and must be approved by a science fair committee before experiments are done. For this reason, it contains no experimental data but instead offers the questions you plan to address, the significance of questions, background information and experimental design. Since a committee must approve your plan, provide a proposal that represents your ideas as important, doable and unique in its approach.

Make a list of "what, when, where and how" questions that relate to your topic. Be specific. Start with all the possible questions, then eliminate those that are too vague or those you cannot answer, given your time and resources. Science Buddies provides an example of this.

Describe the significance of your questions by considering how answering them might be helpful to others in the future. Think big but not unreasonable. Answering questions about bacteria growth, for example, has implications on disease prevention. Research each implication and offer statistics or solid facts on how knowing more would be important. Keep track of your information for your bibliography.

Build a foundation for your questions with background information. Determine what is already known, who figured it out and how these finding have already affected the world. Make sure your questions are not already answered by the work of other people. If they are, find holes in the background information and find new questions that address them. Ask anyone with experience on your topic for help if you have difficult finding background information. Keep track of where you get all information for your bibliography.

Describe a detailed step-by-step method for answering your questions. Individual experiments may be necessary for individual questions. List the necessary materials and equipment. Include exact amounts and explicitly state data collection methods.

Anticipate the results you might get through the method you outlined. Consider any problems you may encounter in your experiments and how you will address them. Think critically about your planned experiments. Make sure they address the questions you stated. If not, redo either your method or your question list.

Formalize a research plan. Make it easy to read and include the following sections: questions, significance, background and materials and methods. Possible problems may be its own section or part of the materials and methods section. Follow school guidelines regarding accompanying paperwork and the order of your sections. The bibliography has its own section and is always last. Check for good grammar and spelling.

  • Always cite whenever you use information from the Web or from books or people. Citations from reliable resources gives credibility to your project.
  • Network at your local university. Students and faculty doing research on a related topic can be a valuable resource.

Related Articles

How to Write a Discussion for a Science Fair Project

How to Write a Discussion for a Science Fair Project

How to Write a Technical Essay

How to Write a Technical Essay

How to Write a Master's Research Proposal

How to Write a Master's Research Proposal

How to Write the Objectives for Study Proposals

How to Write the Objectives for Study Proposals

How to Write a Microbiology Research Proposal

How to Write a Microbiology Research Proposal

How to Write an Investigation Essay

How to Write an Investigation Essay

How to evaluate research.

How to Write High School Research Papers

How to Write High School Research Papers

  • Science Buddies

Dr. Alex Tan has been writing in science for more than six years. She is now working as a technical and science writer in California. Tan received her Ph.D. from Johns Hopkins University

Elsevier QRcode Wechat

  • Research Process

Writing a Scientific Research Project Proposal

  • 5 minute read
  • 87.4K views

Table of Contents

The importance of a well-written research proposal cannot be underestimated. Your research really is only as good as your proposal. A poorly written, or poorly conceived research proposal will doom even an otherwise worthy project. On the other hand, a well-written, high-quality proposal will increase your chances for success.

In this article, we’ll outline the basics of writing an effective scientific research proposal, including the differences between research proposals, grants and cover letters. We’ll also touch on common mistakes made when submitting research proposals, as well as a simple example or template that you can follow.

What is a scientific research proposal?

The main purpose of a scientific research proposal is to convince your audience that your project is worthwhile, and that you have the expertise and wherewithal to complete it. The elements of an effective research proposal mirror those of the research process itself, which we’ll outline below. Essentially, the research proposal should include enough information for the reader to determine if your proposed study is worth pursuing.

It is not an uncommon misunderstanding to think that a research proposal and a cover letter are the same things. However, they are different. The main difference between a research proposal vs cover letter content is distinct. Whereas the research proposal summarizes the proposal for future research, the cover letter connects you to the research, and how you are the right person to complete the proposed research.

There is also sometimes confusion around a research proposal vs grant application. Whereas a research proposal is a statement of intent, related to answering a research question, a grant application is a specific request for funding to complete the research proposed. Of course, there are elements of overlap between the two documents; it’s the purpose of the document that defines one or the other.

Scientific Research Proposal Format

Although there is no one way to write a scientific research proposal, there are specific guidelines. A lot depends on which journal you’re submitting your research proposal to, so you may need to follow their scientific research proposal template.

In general, however, there are fairly universal sections to every scientific research proposal. These include:

  • Title: Make sure the title of your proposal is descriptive and concise. Make it catch and informative at the same time, avoiding dry phrases like, “An investigation…” Your title should pique the interest of the reader.
  • Abstract: This is a brief (300-500 words) summary that includes the research question, your rationale for the study, and any applicable hypothesis. You should also include a brief description of your methodology, including procedures, samples, instruments, etc.
  • Introduction: The opening paragraph of your research proposal is, perhaps, the most important. Here you want to introduce the research problem in a creative way, and demonstrate your understanding of the need for the research. You want the reader to think that your proposed research is current, important and relevant.
  • Background: Include a brief history of the topic and link it to a contemporary context to show its relevance for today. Identify key researchers and institutions also looking at the problem
  • Literature Review: This is the section that may take the longest amount of time to assemble. Here you want to synthesize prior research, and place your proposed research into the larger picture of what’s been studied in the past. You want to show your reader that your work is original, and adds to the current knowledge.
  • Research Design and Methodology: This section should be very clearly and logically written and organized. You are letting your reader know that you know what you are going to do, and how. The reader should feel confident that you have the skills and knowledge needed to get the project done.
  • Preliminary Implications: Here you’ll be outlining how you anticipate your research will extend current knowledge in your field. You might also want to discuss how your findings will impact future research needs.
  • Conclusion: This section reinforces the significance and importance of your proposed research, and summarizes the entire proposal.
  • References/Citations: Of course, you need to include a full and accurate list of any and all sources you used to write your research proposal.

Common Mistakes in Writing a Scientific Research Project Proposal

Remember, the best research proposal can be rejected if it’s not well written or is ill-conceived. The most common mistakes made include:

  • Not providing the proper context for your research question or the problem
  • Failing to reference landmark/key studies
  • Losing focus of the research question or problem
  • Not accurately presenting contributions by other researchers and institutions
  • Incompletely developing a persuasive argument for the research that is being proposed
  • Misplaced attention on minor points and/or not enough detail on major issues
  • Sloppy, low-quality writing without effective logic and flow
  • Incorrect or lapses in references and citations, and/or references not in proper format
  • The proposal is too long – or too short

Scientific Research Proposal Example

There are countless examples that you can find for successful research proposals. In addition, you can also find examples of unsuccessful research proposals. Search for successful research proposals in your field, and even for your target journal, to get a good idea on what specifically your audience may be looking for.

While there’s no one example that will show you everything you need to know, looking at a few will give you a good idea of what you need to include in your own research proposal. Talk, also, to colleagues in your field, especially if you are a student or a new researcher. We can often learn from the mistakes of others. The more prepared and knowledgeable you are prior to writing your research proposal, the more likely you are to succeed.

Language Editing Services

One of the top reasons scientific research proposals are rejected is due to poor logic and flow. Check out our Language Editing Services to ensure a great proposal , that’s clear and concise, and properly referenced. Check our video for more information, and get started today.

Research Fraud: Falsification and Fabrication in Research Data

  • Manuscript Review

Research Fraud: Falsification and Fabrication in Research Data

Research Team Structure

Research Team Structure

You may also like.

what is a descriptive research design

Descriptive Research Design and Its Myriad Uses

Doctor doing a Biomedical Research Paper

Five Common Mistakes to Avoid When Writing a Biomedical Research Paper

research plan of science

Making Technical Writing in Environmental Engineering Accessible

Risks of AI-assisted Academic Writing

To Err is Not Human: The Dangers of AI-assisted Academic Writing

Importance-of-Data-Collection

When Data Speak, Listen: Importance of Data Collection and Analysis Methods

choosing the Right Research Methodology

Choosing the Right Research Methodology: A Guide for Researchers

Why is data validation important in research

Why is data validation important in research?

Writing a good review article

Writing a good review article

Input your search keywords and press Enter.

Join thousands of product people at Insight Out Conf on April 11. Register free.

Insights hub solutions

Analyze data

Uncover deep customer insights with fast, powerful features, store insights, curate and manage insights in one searchable platform, scale research, unlock the potential of customer insights at enterprise scale.

Featured reads

research plan of science

Tips and tricks

How to affinity map using the canvas

research plan of science

Product updates

Dovetail in the Details: 21 improvements to influence, transcribe, and store

research plan of science

Customer stories

Okta securely scales customer insights across 30+ teams

Events and videos

© Dovetail Research Pty. Ltd.

How to write a research plan: Step-by-step guide

Last updated

30 January 2024

Reviewed by

Today’s businesses and institutions rely on data and analytics to inform their product and service decisions. These metrics influence how organizations stay competitive and inspire innovation. However, gathering data and insights requires carefully constructed research, and every research project needs a roadmap. This is where a research plan comes into play.

There’s general research planning; then there’s an official, well-executed research plan. Whatever data-driven research project you’re gearing up for, the research plan will be your framework for execution. The plan should also be detailed and thorough, with a diligent set of criteria to formulate your research efforts. Not including these key elements in your plan can be just as harmful as having no plan at all.

Read this step-by-step guide for writing a detailed research plan that can apply to any project, whether it’s scientific, educational, or business-related.

  • What is a research plan?

A research plan is a documented overview of a project in its entirety, from end to end. It details the research efforts, participants, and methods needed, along with any anticipated results. It also outlines the project’s goals and mission, creating layers of steps to achieve those goals within a specified timeline.

Without a research plan, you and your team are flying blind, potentially wasting time and resources to pursue research without structured guidance.

The principal investigator, or PI, is responsible for facilitating the research oversight. They will create the research plan and inform team members and stakeholders of every detail relating to the project. The PI will also use the research plan to inform decision-making throughout the project.

  • Why do you need a research plan?

Create a research plan before starting any official research to maximize every effort in pursuing and collecting the research data. Crucially, the plan will model the activities needed at each phase of the research project.

Like any roadmap, a research plan serves as a valuable tool providing direction for those involved in the project—both internally and externally. It will keep you and your immediate team organized and task-focused while also providing necessary definitions and timelines so you can execute your project initiatives with full understanding and transparency.

External stakeholders appreciate a working research plan because it’s a great communication tool, documenting progress and changing dynamics as they arise. Any participants of your planned research sessions will be informed about the purpose of your study, while the exercises will be based on the key messaging outlined in the official plan.

Here are some of the benefits of creating a research plan document for every project:

Project organization and structure

Well-informed participants

All stakeholders and teams align in support of the project

Clearly defined project definitions and purposes

Distractions are eliminated, prioritizing task focus

Timely management of individual task schedules and roles

Costly reworks are avoided

  • What should a research plan include?

The different aspects of your research plan will depend on the nature of the project. However, most official research plan documents will include the core elements below. Each aims to define the problem statement, devising an official plan for seeking a solution.

Specific project goals and individual objectives

Ideal strategies or methods for reaching those goals

Required resources

Descriptions of the target audience, sample sizes, demographics, and scopes

Key performance indicators (KPIs)

Project background

Research and testing support

Preliminary studies and progress reporting mechanisms

Cost estimates and change order processes

Depending on the research project’s size and scope, your research plan could be brief—perhaps only a few pages of documented plans. Alternatively, it could be a fully comprehensive report. Either way, it’s an essential first step in dictating your project’s facilitation in the most efficient and effective way.

  • How to write a research plan for your project

When you start writing your research plan, aim to be detailed about each step, requirement, and idea. The more time you spend curating your research plan, the more precise your research execution efforts will be.

Account for every potential scenario, and be sure to address each and every aspect of the research.

Consider following this flow to develop a great research plan for your project:

Define your project’s purpose

Start by defining your project’s purpose. Identify what your project aims to accomplish and what you are researching. Remember to use clear language.

Thinking about the project’s purpose will help you set realistic goals and inform how you divide tasks and assign responsibilities. These individual tasks will be your stepping stones to reach your overarching goal.

Additionally, you’ll want to identify the specific problem, the usability metrics needed, and the intended solutions.

Know the following three things about your project’s purpose before you outline anything else:

What you’re doing

Why you’re doing it

What you expect from it

Identify individual objectives

With your overarching project objectives in place, you can identify any individual goals or steps needed to reach those objectives. Break them down into phases or steps. You can work backward from the project goal and identify every process required to facilitate it.

Be mindful to identify each unique task so that you can assign responsibilities to various team members. At this point in your research plan development, you’ll also want to assign priority to those smaller, more manageable steps and phases that require more immediate or dedicated attention.

Select research methods

Research methods might include any of the following:

User interviews: this is a qualitative research method where researchers engage with participants in one-on-one or group conversations. The aim is to gather insights into their experiences, preferences, and opinions to uncover patterns, trends, and data.

Field studies: this approach allows for a contextual understanding of behaviors, interactions, and processes in real-world settings. It involves the researcher immersing themselves in the field, conducting observations, interviews, or experiments to gather in-depth insights.

Card sorting: participants categorize information by sorting content cards into groups based on their perceived similarities. You might use this process to gain insights into participants’ mental models and preferences when navigating or organizing information on websites, apps, or other systems.

Focus groups: use organized discussions among select groups of participants to provide relevant views and experiences about a particular topic.

Diary studies: ask participants to record their experiences, thoughts, and activities in a diary over a specified period. This method provides a deeper understanding of user experiences, uncovers patterns, and identifies areas for improvement.

Five-second testing: participants are shown a design, such as a web page or interface, for just five seconds. They then answer questions about their initial impressions and recall, allowing you to evaluate the design’s effectiveness.

Surveys: get feedback from participant groups with structured surveys. You can use online forms, telephone interviews, or paper questionnaires to reveal trends, patterns, and correlations.

Tree testing: tree testing involves researching web assets through the lens of findability and navigability. Participants are given a textual representation of the site’s hierarchy (the “tree”) and asked to locate specific information or complete tasks by selecting paths.

Usability testing: ask participants to interact with a product, website, or application to evaluate its ease of use. This method enables you to uncover areas for improvement in digital key feature functionality by observing participants using the product.

Live website testing: research and collect analytics that outlines the design, usability, and performance efficiencies of a website in real time.

There are no limits to the number of research methods you could use within your project. Just make sure your research methods help you determine the following:

What do you plan to do with the research findings?

What decisions will this research inform? How can your stakeholders leverage the research data and results?

Recruit participants and allocate tasks

Next, identify the participants needed to complete the research and the resources required to complete the tasks. Different people will be proficient at different tasks, and having a task allocation plan will allow everything to run smoothly.

Prepare a thorough project summary

Every well-designed research plan will feature a project summary. This official summary will guide your research alongside its communications or messaging. You’ll use the summary while recruiting participants and during stakeholder meetings. It can also be useful when conducting field studies.

Ensure this summary includes all the elements of your research project. Separate the steps into an easily explainable piece of text that includes the following:

An introduction: the message you’ll deliver to participants about the interview, pre-planned questioning, and testing tasks.

Interview questions: prepare questions you intend to ask participants as part of your research study, guiding the sessions from start to finish.

An exit message: draft messaging your teams will use to conclude testing or survey sessions. These should include the next steps and express gratitude for the participant’s time.

Create a realistic timeline

While your project might already have a deadline or a results timeline in place, you’ll need to consider the time needed to execute it effectively.

Realistically outline the time needed to properly execute each supporting phase of research and implementation. And, as you evaluate the necessary schedules, be sure to include additional time for achieving each milestone in case any changes or unexpected delays arise.

For this part of your research plan, you might find it helpful to create visuals to ensure your research team and stakeholders fully understand the information.

Determine how to present your results

A research plan must also describe how you intend to present your results. Depending on the nature of your project and its goals, you might dedicate one team member (the PI) or assume responsibility for communicating the findings yourself.

In this part of the research plan, you’ll articulate how you’ll share the results. Detail any materials you’ll use, such as:

Presentations and slides

A project report booklet

A project findings pamphlet

Documents with key takeaways and statistics

Graphic visuals to support your findings

  • Format your research plan

As you create your research plan, you can enjoy a little creative freedom. A plan can assume many forms, so format it how you see fit. Determine the best layout based on your specific project, intended communications, and the preferences of your teams and stakeholders.

Find format inspiration among the following layouts:

Written outlines

Narrative storytelling

Visual mapping

Graphic timelines

Remember, the research plan format you choose will be subject to change and adaptation as your research and findings unfold. However, your final format should ideally outline questions, problems, opportunities, and expectations.

  • Research plan example

Imagine you’ve been tasked with finding out how to get more customers to order takeout from an online food delivery platform. The goal is to improve satisfaction and retain existing customers. You set out to discover why more people aren’t ordering and what it is they do want to order or experience. 

You identify the need for a research project that helps you understand what drives customer loyalty. But before you jump in and start calling past customers, you need to develop a research plan—the roadmap that provides focus, clarity, and realistic details to the project.

Here’s an example outline of a research plan you might put together:

Project title

Project members involved in the research plan

Purpose of the project (provide a summary of the research plan’s intent)

Objective 1 (provide a short description for each objective)

Objective 2

Objective 3

Proposed timeline

Audience (detail the group you want to research, such as customers or non-customers)

Budget (how much you think it might cost to do the research)

Risk factors/contingencies (any potential risk factors that may impact the project’s success)

Remember, your research plan doesn’t have to reinvent the wheel—it just needs to fit your project’s unique needs and aims.

Customizing a research plan template

Some companies offer research plan templates to help get you started. However, it may make more sense to develop your own customized plan template. Be sure to include the core elements of a great research plan with your template layout, including the following:

Introductions to participants and stakeholders

Background problems and needs statement

Significance, ethics, and purpose

Research methods, questions, and designs

Preliminary beliefs and expectations

Implications and intended outcomes

Realistic timelines for each phase

Conclusion and presentations

How many pages should a research plan be?

Generally, a research plan can vary in length between 500 to 1,500 words. This is roughly three pages of content. More substantial projects will be 2,000 to 3,500 words, taking up four to seven pages of planning documents.

What is the difference between a research plan and a research proposal?

A research plan is a roadmap to success for research teams. A research proposal, on the other hand, is a dissertation aimed at convincing or earning the support of others. Both are relevant in creating a guide to follow to complete a project goal.

What are the seven steps to developing a research plan?

While each research project is different, it’s best to follow these seven general steps to create your research plan:

Defining the problem

Identifying goals

Choosing research methods

Recruiting participants

Preparing the brief or summary

Establishing task timelines

Defining how you will present the findings

Get started today

Go from raw data to valuable insights with a flexible research platform

Editor’s picks

Last updated: 21 September 2023

Last updated: 27 January 2024

Last updated: 20 January 2024

Last updated: 23 January 2024

Last updated: 5 February 2024

Last updated: 30 January 2024

Last updated: 17 January 2024

Last updated: 12 October 2023

Last updated: 31 January 2024

Last updated: 10 April 2023

Latest articles

Related topics, log in or sign up.

Get started with a free trial

Students & Educators  —Menu

  • Educational Resources
  • Educators & Faculty
  • College Planning
  • ACS ChemClub
  • Project SEED
  • U.S. National Chemistry Olympiad
  • Student Chapters
  • ACS Meeting Information
  • Undergraduate Research
  • Internships, Summer Jobs & Coops
  • Study Abroad Programs
  • Finding a Mentor
  • Two Year/Community College Students
  • Social Distancing Socials
  • Planning for Graduate School
  • Grants & Fellowships
  • Career Planning
  • International Students
  • Planning for Graduate Work in Chemistry
  • ACS Bridge Project
  • Graduate Student Organizations (GSOs)
  • Schedule-at-a-Glance
  • Standards & Guidelines
  • Explore Chemistry
  • Science Outreach
  • Publications
  • ACS Student Communities
  • You are here:
  • American Chemical Society
  • Students & Educators

Writing the Research Plan for Your Academic Job Application

By Jason G. Gillmore, Ph.D., Associate Professor, Department of Chemistry, Hope College, Holland, MI

A research plan is more than a to-do list for this week in lab, or a manila folder full of ideas for maybe someday—at least if you are thinking of a tenure-track academic career in chemistry at virtually any bachelor’s or higher degree–granting institution in the country. A perusal of the academic job ads in C&EN every August–October will quickly reveal that most schools expect a cover letter (whether they say so or not), a CV, a teaching statement, and a research plan, along with reference letters and transcripts. So what is this document supposed to be, and why worry about it now when those job ads are still months away?

What Is a Research Plan?

A research plan is a thoughtful, compelling, well-written document that outlines your exciting, unique research ideas that you and your students will pursue over the next half decade or so to advance knowledge in your discipline and earn you grants, papers, speaking invitations, tenure, promotion, and a national reputation. It must be a document that people at the department you hope to join will (a) read, and (b) be suitably excited about to invite you for an interview.

That much I knew when I was asked to write this article. More specifics I only really knew for my own institution, Hope College (a research intensive undergraduate liberal arts college with no graduate program), and even there you might get a dozen nuanced opinions among my dozen colleagues. So I polled a broad cross-section of my network, spanning chemical subdisciplines at institutions ranging from small, teaching-centered liberal arts colleges to our nation’s elite research programs, such as Scripps and MIT. The responses certainly varied, but they did center on a few main themes, or illustrate a trend across institution types. In this article I’ll share those commonalities, while also encouraging you to be unafraid to contact a search committee chair with a few specific questions, especially for the institutions you are particularly excited about and feel might be the best fit for you.

How Many Projects Should You Have?

research plan of science

While more senior advisors and members of search committees may have gotten their jobs with a single research project, conventional wisdom these days is that you need two to three distinct but related projects. How closely related to one another they should be is a matter of debate, but almost everyone I asked felt that there should be some unifying technique, problem or theme to them. However, the projects should be sufficiently disparate that a failure of one key idea, strategy, or technique will not hamstring your other projects.

For this reason, many applicants wisely choose to identify:

  • One project that is a safe bet—doable, fundable, publishable, good but not earthshaking science.
  • A second project that is pie-in-the-sky with high risks and rewards.
  • A third project that fits somewhere in the middle.

Having more than three projects is probably unrealistic. But even the safest project must be worth doing, and even the riskiest must appear to have a reasonable chance of working.

How Closely Connected Should Your Research Be with Your Past?

Your proposed research must do more than extend what you have already done. In most subdisciplines, you must be sufficiently removed from your postdoctoral or graduate work that you will not be lambasted for clinging to an advisor’s apron strings. After all, if it is such a good idea in their immediate area of interest, why aren’t they pursuing it?!?

But you also must be able to make the case for why your training makes this a good problem for you to study—how you bring a unique skill set as well as unique ideas to this research. The five years you will have to do, fund, and publish the research before crafting your tenure package will go by too fast for you to break into something entirely outside your realm of expertise.

Biochemistry is a partial exception to this advice—in this subdiscipline it is quite common to bring a project with you from a postdoc (or more rarely your Ph.D.) to start your independent career. However, you should still articulate your original contribution to, and unique angle on the work. It is also wise to be sure your advisor tells that same story in his or her letter and articulates support of your pursuing this research in your career as a genuinely independent scientist (and not merely someone who could be perceived as his or her latest "flunky" of a collaborator.)

Should You Discuss Potential Collaborators?

Regarding collaboration, tread lightly as a young scientist seeking or starting an independent career. Being someone with whom others can collaborate in the future is great. Relying on collaborators for the success of your projects is unwise. Be cautious about proposing to continue collaborations you already have (especially with past advisors) and about starting new ones where you might not be perceived as the lead PI. Also beware of presuming you can help advance the research of someone already in a department. Are they still there? Are they still doing that research? Do they actually want that help—or will they feel like you are criticizing or condescending to them, trying to scoop them, or seeking to ride their coattails? Some places will view collaboration very favorably, but the safest route is to cautiously float such ideas during interviews while presenting research plans that are exciting and achievable on your own.

How Do You Show Your Fit?

Some faculty advise tailoring every application packet document to every institution to which you apply, while others suggest tweaking only the cover letter. Certainly the cover letter is the document most suited to introducing yourself and making the case for how you are the perfect fit for the advertised position at that institution. So save your greatest degree of tailoring for your cover letter. It is nice if you can tweak a few sentences of other documents to highlight your fit to a specific school, so long as it is not contrived.

Now, if you are applying to widely different types of institutions, a few different sets of documents will certainly be necessary. The research plan that you target in the middle to get you a job at both Harvard University and Hope College will not get you an interview at either! There are different realities of resources, scope, scale, and timeline. Not that my colleagues and I at Hope cannot tackle research that is just as exciting as Harvard’s. However, we need to have enough of a niche or a unique angle both to endure the longer timeframe necessitated by smaller groups of undergraduate researchers and to ensure that we still stand out. Furthermore, we generally need to be able to do it with more limited resources. If you do not demonstrate that understanding, you will be dismissed out of hand. But at many large Ph.D. programs, any consideration of "niche" can be inferred as a lack of confidence or ambition.

Also, be aware that department Web pages (especially those several pages deep in the site, or maintained by individual faculty) can be woefully out-of-date. If something you are planning to say is contingent on something you read on their Web site, find a way to confirm it!

While the research plan is not the place to articulate start-up needs, you should consider instrumentation and other resources that will be necessary to get started, and where you will go for funding or resources down the road. This will come up in interviews, and hopefully you will eventually need these details to negotiate a start-up package.

Who Is Your Audience?

Your research plan should show the big picture clearly and excite a broad audience of chemists across your sub-discipline. At many educational institutions, everyone in the department will read the proposal critically, at least if you make the short list to interview. Even at departments that leave it all to a committee of the subdiscipline, subdisciplines can be broad and might even still have an outside member on the committee. And the committee needs to justify their actions to the department at large, as well as to deans, provosts, and others. So having at least the introduction and executive summaries of your projects comprehensible and compelling to those outside your discipline is highly advantageous.

Good science, written well, makes a good research plan. As you craft and refine your research plan, keep the following strategies, as well as your audience in mind:

  • Begin the document with an abstract or executive summary that engages a broad audience and shows synergies among your projects. This should be one page or less, and you should probably write it last. This page is something you could manageably consider tailoring to each institution.
  • Provide sufficient details and references to convince the experts you know your stuff and actually have a plan for what your group will be doing in the lab. Give details of first and key experiments, and backup plans or fallback positions for their riskiest aspects.
  • Hook your readers with your own ideas fairly early in the document, then strike a balance between your own new ideas and the necessary well referenced background, precedents, and justification throughout. Propose a reasonable tentative timeline, if you can do so in no more than a paragraph or two, which shows how you envision spacing out the experiments within and among your projects. This may fit well into your executive summary
  • Show how you will involve students (whether undergraduates, graduate students, an eventual postdoc or two, possibly even high schoolers if the school has that sort of outreach, depending on the institutions to which you are applying) and divide the projects among students.
  • Highlight how your work will contribute to the education of these students. While this is especially important at schools with greater teaching missions, it can help set you apart even at research intensive institutions. After all, we all have to demonstrate “broader impacts” to our funding agencies!
  • Include where you will pursue funding, as well as publication, if you can smoothly work it in. This is especially true if there is doubt about how you plan to target or "market" your research. Otherwise, it is appropriate to hold off until the interview to discuss this strategy.

So, How Long Should Your Research Plan Be?

Chemistry Grad Student & Postdoc Blog

Learn more on the Blog

Here is where the answers diverged the most and without a unifying trend across institutions. Bottom line, you need space to make your case, but even more, you need people to read what you write.

A single page abstract or executive summary of all your projects together provides you an opportunity to make the case for unifying themes yet distinct projects. It may also provide space to articulate a timeline. Indeed, many readers will only read this single page in each application, at least until winnowing down to a more manageable list of potential candidates. At the most elite institutions, there may be literally hundreds of applicants, scores of them entirely well-suited to the job.

While three to five pages per proposal was a common response (single spaced, in 11-point Arial or 12-point Times with one inch margins), including references (which should be accurate, appropriate, and current!), some of my busiest colleagues have said they will not read more than about three pages total. Only a few actually indicated they would read up to 12-15 pages for three projects. In my opinion, ten pages total for your research plans should be a fairly firm upper limit unless you are specifically told otherwise by a search committee, and then only if you have two to three distinct proposals.

Why Start Now?

Hopefully, this question has answered itself already! Your research plan needs to be a well thought out document that is an integrated part of applications tailored to each institution to which you apply. It must represent mature ideas that you have had time to refine through multiple revisions and a great deal of critical review from everyone you can get to read them. Moreover, you may need a few different sets of these, especially if you will be applying to a broad range of institutions. So add “write research plans” to this week’s to do list (and every week’s for the next few months) and start writing up the ideas in that manila folder into some genuine research plans. See which ones survive the process and rise to the top and you should be well prepared when the job ads begin to appear in C&EN in August!

research plan of science

Jason G. Gillmore , Ph.D., is an Associate Professor of Chemistry at Hope College in Holland, MI. A native of New Jersey, he earned his B.S. (’96) and M.S. (’98) degrees in chemistry from Virginia Tech, and his Ph.D. (’03) in organic chemistry from the University of Rochester. After a short postdoctoral traineeship at Vanderbilt University, he joined the faculty at Hope in 2004. He has received the Dreyfus Start-up Award, Research Corporation Cottrell College Science Award, and NSF CAREER Award, and is currently on sabbatical as a Visiting Research Professor at Arizona State University. Professor Gillmore is the organizer of the Biennial Midwest Postdoc to PUI Professor (P3) Workshop co-sponsored by ACS, and a frequent panelist at the annual ACS Postdoc to Faculty (P2F) Workshops.

Other tips to help engage (or at least not turn off) your readers include:

  • Avoid two-column formats.
  • Avoid too-small fonts that hinder readability, especially as many will view the documents online rather than in print!
  • Use good figures that are readable and broadly understandable!
  • Use color as necessary but not gratuitously.

Accept & Close The ACS takes your privacy seriously as it relates to cookies. We use cookies to remember users, better understand ways to serve them, improve our value proposition, and optimize their experience. Learn more about managing your cookies at Cookies Policy .

1155 Sixteenth Street, NW, Washington, DC 20036, USA |  service@acs.org  | 1-800-333-9511 (US and Canada) | 614-447-3776 (outside North America)

  • Terms of Use
  • Accessibility

Copyright © 2024 American Chemical Society

ASHA_org_pad

  • CREd Library , Planning, Managing, and Publishing Research

Developing a Five-Year Research Plan

Cathy binger and lizbeth finestack, doi: 10.1044/cred-pvd-path006.

The following is a transcript of the presentation videos, edited for clarity.

What Is a Research Plan, and Why Do You Need One?

Presented by Cathy Binger

research plan of science

First we’re going to talk about what a research plan is, why it’s important to write one, and why five years—why not one year, why not ten years. So we’ll do some of those basic things, then Liza is going to get down and dirty into the nitty-gritty of “now what” how do I go about writing that research plan.

research plan of science

First of all, what is a research plan? I’m sure some of you have taken a stab at these already. In case you haven’t, this is a real personalized map that relates your projects to goals. It’s exactly what it sounds like, it’s a plan of how you’re going to go about doing your research. It doesn’t necessarily just include research.

It’s something that you need to put a little time and effort into in the beginning. And then, if you don’t revisit it, it’s really a useless document. It’s something that you need to come back to repeatedly, at least annually, and you need to make it visible. So it’s not a document that sits around and once a year you pull it out and look at it.

It can and should be designed, especially initially, with the help of a mentor or colleague. And it does serve multiple purposes, with different lengths and different amounts of detail.

I forgot to say, too, getting started, the slides for this talk were started using as a jumping off point Ray Kent’s talk from last year. So some of the slides we’ve borrowed from him, so many thanks to him for that.

research plan of science

But why do we want to do a research plan? Well, to me the big thing is the vision. Dr. Barlow talked this morning about your line of research and really knowing where you want to go, and this is where that shows up with all the nuts and bolts in place.

What do you want to accomplish? What do you want to contribute? Most of you are at the stage in your career where maybe you have started out with that you want to change the world scenario and realized that whatever you wanted your first research project to be, really, is your entire career. You need to get that down to the point where it is manageable projects that you can do—this is where you map out what those projects are and set reasonable timelines for that.

You want to really demonstrate your independent thinking and your own creativity, whatever that is that you then establish as a PhD student, postdoc, and beyond—this is where you come back to, okay, here’s how I’m going to go about achieving all of that.

This next point, learning to realistically gauge how long it takes to achieve each goal, this for most of us is a phenomenally challenging thing to do. Most of us really overestimate what we can do in a certain amount of time, and we learn the hard way that you can’t, and that’s another reason why you keep coming back to these plans repeatedly and learning over time what’s really manageable, what’s really doable, so we can still reach our goals and be very strategic about how we do that.

When you’re not strategic, you just don’t meet the goals. Your time gets sucked into so many different things. We need to be really practical and strategic.

Everything we do is going to take longer than we think.

I think this last one is something that maybe we don’t talk about enough. Really being honest with ourselves about the role of research in our lives. Not all of you are at very high-level research universities. Some of you have chosen to go elsewhere, where research maybe isn’t going to be playing the same role as it is for other people. The research plan for someone at an R One research intensive university is going to look quite different from someone who is at a primary teaching university. We need to be open and practical about that.

research plan of science

Getting sidetracked. I love this picture, I just found this picture the other day. This feels like my life. You can get pulled in so many different directions once you are a professor. You will get asked to do a thousand different things. There are lots of great opportunities that are out there. Especially initially, it’s tempting to say yes to all of them. But if you’re going to be productive, you have to be very strategic. I’m going to be a little bit sexist against my own sex here for a minute, but my observation has been that women tend to fall into this a little bit more than men do in wanting to say yes and be people pleasers for everything that comes down the pike.

It is a professional skill to learn how to say no. And to do that in such a way that you are not burning bridges as you go down the path. That is a critical skill if you are going to be a successful researcher. I can’t tell you how many countless people I’ve seen who are very bright, very dedicated, have the skills that it takes in terms of doing the work—but then they are not successful because they’ve gotten sidetracked and they try to be too much of a good citizen, give too much service to the department, too much “sure I’ll take on that extra class” or whatever else comes down the line.

I just spoke with a professor recently who had something like five hours a week of office hours scheduled every single week for one class. Margaret is shaking her head like “are you kidding?” That’s crazy stuff. But he wanted to really support his students. His students loved him, but he was not going to get tenure. That’s the story.

So we have to be very thoughtful and strategic, and what can help you with this, and ASHA very firmly recognizes which is why we’re here—is that your mentors in your life should be there to help you learn these skills and learn what to say yes to, and learn what to say no to. I’ve learned to say things like, “Let me check with my mentor before I agree to that.” And it gives you a way out of that. The line that I use a lot is, “Let me check with my department head” or, I just said this to somebody last week, “I just promised my department head two weeks ago that I would only do X number of external workshops this year, so I’m going to have to turn this one down.” Those are really important skills to develop.

And having that research plan in place that you can go back to and say, know what, it’s not on my plan I can’t do it. If I do it—I have to go back to my research plan and figure out what I’m going to kick off in order to review this extra paper, in order to take on this extra task. The plan also helps me to know exactly what to say no to. And to be very direct and have a very strong visual.

I actually have my research plan up on a giant whiteboard in my office, so I can always go back to that and see where I am, and I can say, “Okay, what am I going to kick off of here? Nothing. Okay, I have to say no to whatever comes up.” Just be strategic. This is where I see most beginning professors really end up taking that wrong fork in the road—taking that right instead of that left, and ending up not being the successful researcher that they wanted to be.

research plan of science

What evidence supports research planning? This was something Ray Kent had found. That a recent analysis had found that postdoc scholars who developed a written plan with their postdoc advisers were much more productive than those who didn’t. And your performance during a postdoc—and I know many of you have either finished your postdoc or decided not to—so more simply, just during those first six years, the decisions you make really do establish the foundation for the rest of your professional life. It’s very important to get started and get off on the right foot.

research plan of science

I love this quote, I just found it the other day: “Productivity is never an accident. It is always the result of a commitment to excellence, intelligent planning, and focused effort.”

research plan of science

What we see with productivity is that postdoc scholars who developed written productivity expectations with their advisers were more productive than those who didn’t. You see 23% more papers submitted, 30% more first-author papers, and more grant proposals as well.

research plan of science

So why five years? I’m going to start with number 5. It’s long enough to build a program of research, but short enough to deal with changing circumstances. That’s really the long and the short of the matter. As well as these other things as well that I won’t take the time to go through point by point.

What Should a Five-Year Plan Include?

Presented by Lizbeth Finestack

research plan of science

So, thinking about a five-year research plan, I like to think about it like your major “To Do List.” It’s what you’re going to accomplish in five years. Start thinking: What is going to be on my to do list?

research plan of science

You can also think about it like: Okay, I have research. I’ve got to do research. Maybe think about this as one big bucket, or maybe one humongous silo. I have some farm themes going on. Cathy was just on a farm, so I thought I’d tie that in.

So here’s your big silo. You can call that your research silo.

research plan of science

But more realistically, you need to think about it like separate buckets, separate silos, where research is just one of those. Just like Cathy indicated, there’s going to be lots of other things coming up that you’re going to have to manage. They are going to have to be on your to do list, you need to figure out how to fit everything in.

What all those other buckets or silos are, are really going to depend on your job. And maybe the size of the silos, and the size of the buckets are going to vary depending on where you are, what the expectations are at your institution.

That’s important to keep in mind, and Cathy said this too, it’s not going to be the same for everyone. The five-year plan has to be your plan, your to do list.

research plan of science

Here are some buckets or some silos that I have on my list and the way that I break it up, this is just one example, take it or leave it.

The first three are all very closely related, right? Thinking about grants, thinking about research, thinking about publications. I’m going to define grants as actual writing, getting the grant, getting the money.

Research is what you’re going to do once you get that money. Steps you need to take before you are getting the money. Any sorts of projects, the lab work, that’s why I have the lab picture there. Of course, publications are part of the product—what’s coming out of the research—but it also cycles in because you need publications to support that you are a researcher to apply for funding and show you have this line of research that you’ve established and you’ll be able to continue. So, those first three are really closely related. And that’s where I’ll go next. And then have teaching and service you see here at the bottom.

research plan of science

So thinking about research, in that broad sense. As you’re writing your five-year plan you’re going to want to think of, “What’s my long-term goal?” There’s lots of ways to think of long-term goals. You could think, before I die, this is what I want to accomplish. For me I kind of have that. My long-term goal is that I’m going to find the most effective and efficient interventions for kids with language impairment. Huge broad goal. But within that I can start narrowing it down.

Where am I within that? Within the next five years or maybe the next ten years, what is it I want to accomplish towards that goal. Then start thinking about: In order to accomplish that goal, what are the steps I need to take? Starting to break it down a little bit. Then it’s also going to be really important to think: where are you going to start? Where are you now? What do you need to have happen? And is it reasonable to accomplish this goal within five years? Is it going to take longer? Maybe you could do it in a couple years? Start thinking about the timeline that’s going to work for you.

research plan of science

Then thinking about your goals—and everyone’s program is going to be different, like I said, there’s going to be a lot of individual needs, preferences. So it might be the case that you have this one long-term goal that you’re aiming for. Long-term goal in the sense of, maybe, what you want to study in your R01, perhaps something like that. But in order to get to that point, you’re going to have several short-term goals that need to be accomplished.

research plan of science

Or maybe it’s the case that you have two long-term goals. And with each of those you’re going to have multiple short-term goals that you’re working on. Maybe the scope of each of these long-term goals is a little bit less than in that first scenario.

Start thinking about my research, what I want to do, and how it might fit into these different circumstances.

research plan of science

Also thinking about your goals, this is a slide from Ray Kent from last year, was thinking about the different types of projects you might want to pursue, and thinking about ones that are definitely well on your way. They are safe bets. You have some funding. They are going to lead directly into your longer-term plan.

Those are going to be your front burner—things you can easily focus on. That said, don’t put everything there.

You can also have things on the back burner. Things that really excite you, might have huge benefits, big pay. But you don’t want to spend all of your time there because they could be pretty risky.

Start thinking about where you’re putting your time. Are you putting it all on this high-risk thing that if it doesn’t pan out you’re going to be in big trouble? Or balancing that somewhat with your front burner. Making that steady progress that will lead directly to help fund an R01 or whatever the mechanism that you’re looking for.

research plan of science

Then, thinking about your goals—if you have multiple long-term goals, or thinking about your short-term goals, you could think about your process. Is it something where you need to do study 1 then study 2, then study 3—each of those building on each other, that’s leading to that long-term goal. In many cases, that is the case, where you have to get information from the first study which is going to lead directly to the second study and so forth.

research plan of science

Or is it the case that you can be working on these three short-term goals simultaneously? Spreading your resources at the same time. Maybe it will take longer for any one study, but across a longer period of time you’ll get the information that you need to reach that long-term goal.

Lots and lots of different ways to go about it. The important thing is to think about what your needs are and what makes the most sense for you.

research plan of science

Here’s my own little personal example. Starting over here, I have my dissertation study. My dissertation study was this early efficacy study looking at one treatment approach using novel forms that really can’t generalize to anything too useful, but it was important.

Then I did a follow up study, where I was taking that same paradigm, looking to see where kids with typical development perform on the task. So I have these two studies, and they served as my preliminary studies for an R03. So I just finished an R03 where I was looking at different treatment approaching for kids with primary language impairment. At the same time, while conducting my R03, I’m also looking at some different approaches that might help with language development. Also conducting surveys to see what current practices are.

I have these three projects going on simultaneously, that are going to lead to a bigger pilot study that are going to feed directly into my R01. All of this will serve as preliminary data to go into an R01.

Start thinking about your projects, what you have. Maybe starting with your dissertation project or work that you’re doing as a postdoc as seeing how that can feed into your long-term goal. And really utilizing it, building on it, to your benefit.

research plan of science

That’s all fine and dandy. You can draw these great pictures. But you still have to break it down some more. It’s not like, “Oh, I’m just going to do this project.” There are other steps involved, and lots of the time these steps are going to be just as time consuming.

Starting to think about: well, if you have the funding. Saying, “I want to do this study, but I have no money to do it.” What are the steps in order to get the money to do it? Do you have a pilot study? What do you need?

Start thinking about the resources? Do you need to develop stimuli, protocols, procedures? Start working on that. All of these can be very time consuming, and if you don’t jump on that immediately, it’s going to delay when you can start that project.

Thinking about IRB. Relationships for recruitment, if you’re working with special populations especially? Do you have necessary personnel, grad students, people to help you with the project? Do you need to train them? What’s the timeline of the study?

Start thinking about all these pieces, and how they are going to fit in that timeline.

research plan of science

This is one way that might help you start thinking about the resources that you need. This is online—Ray Kent had it in his talk, and when I was doing my searches I came across it too and I have the website at the end. Just different ways to think about the resources you might need.

research plan of science

Let’s talk about mapping it out. You have your long-term goal. You have your short-term goals. You’re breaking it down thinking about all those little steps that you need to accomplish. We gotta put it on a calendar. When is it going to happen?

This is an example—you might have your five years. Each month plugging in what are you going to accomplish by that time. Maybe it’s when are grant applications due? It’s going to be important to put those on there to go what do I need to do to make that deadline. Maybe it’s putting when you’re going to get publications out. Things like that.

Honestly, looking at this drives me a little bit crazy, it seems a bit overwhelming. But it’s important to get to these details.

research plan of science

This is an example from, I did Lessons for Success a few years ago and they had their format for doing your plan. I wrote out all my projects, started thinking about all the different aspects. So if something like this works for you, by all means you could use that type of procedure.

research plan of science

Here’s a grid that Ray Kent showed last year. We’re breaking it down by semester. Thinking about each of your semesters, what manuscripts you’re going to be working on, what data collection, your grant applications. Starting to get into some of those other buckets: course preparation, conference submissions.

research plan of science

We also need to include teaching and service.

You probably can’t see this very well. This is similar to that last slide Ray Kent had used last year.

I have my five year plan: what studies I want to accomplish, start thinking about breaking it down.

Then at the beginning of each semester, I fill in a grid like this. Where at the top, I have each of my buckets. I have my grant bucket, my writing bucket which is going to include publications. I also include doing article reviews in my writing bucket, because that’s my writing time. My teaching bucket, my research bucket. Then at the end, my service bucket.

At the beginning of the semester, I think about the big things I want to accomplish. I list those at the top. Then at the beginning of each month, I say, okay what are the things I’m going to accomplish this month, write those in. Then at the beginning of each week, I start looking at whether I’m dedicating any time to the things I said I was going to do that month. I start listing those out saying, this is the amount of time I’m going to spend on that. Of course, I have to take data on what I actually do, so I plug in how much time I’m spending on each of the tasks. Then I graph it, because that’s rewarding to see how much time you’re spending on things, and I get a little side-tracked sometimes.

Think about a system that will help you keep on track, to make sure you’re meeting the goals that you want to meet in terms of your research. But also getting the other things done that you need to get done in terms of teaching and service.

Discussion and Questions

Compiled from comments made during the Pathways 2014 and 2015 conferences. (Video unavailable.)

Building Flexibility into Your Five-Year Plan Comments by Ray Kent, University of Wisconsin-Madison

The five-year plan is not a contract. It’s a map or a compass. A general set of directions to help you plan ahead. It’s not even a contract with yourself, because it will inevitably be revised in some ways.

Sometimes cool things land in your lap. Very often it turns out that through serendipity or whatever else, you find opportunities that are very enticing. Some of those can be path to an entirely new line of research. Some of them can be a huge distraction and a waste of time. It’s a really cool part of science that new things come along. If we put on blinders and say, “I’m committed to my research plan,” and we don’t look to the left or the right, we’re really robbing ourselves of much of the richness of the scientific life. Science is full of surprises, and sometimes those surprises are going to appear as research projects. The problem is you don’t want to redirect all your time and resources to those until you’re really sure they are going to pay off. I personally believe, some of those high risk but really appealing projects are things you can nurse along. You can devote some time and build some collaborations – far enough to determine how realistic and viable they are. That’s important because those things can be the core of your next research program.

It’s very easy to get overcommitted. We all know people who always say “yes”—and we know those people, and they are often disappointing because they can’t get things done. It’s important to have new directions, but limit them. Don’t say, “I’m going to have 12 new directions this year.” Maybe one or two. Weigh them carefully. Talk about them with other people to get a judgment about how difficult it might be to implement them. It enriches science: not only our knowledge, but the way we acquire new knowledge. A psychologist, George Miller—this is the guy with the magic number 7 +- 2—when we interviewed him years ago at Boystown, he said, “My conviction is that everybody should be able to learn a new area of study within three months.” That’s what he thought for a scientist was a goal.

The idea is that you can learn new things. And that’s very important because when you think of it in terms of a 30-year career, how likely is it that the project that you’re undertaking at age 28 is the same project you’ll be working on at age 68? Not very likely. You’re going to be reinventing yourself as a scientist. And reinventing yourself is one of the most important things you can do, because otherwise you’re going to be dead wood. Some projects aren’t worth carrying beyond five or ten years. They have an expiration date.

Building Risk into Your Five-Year Plan Comments by Ray Kent, University of Wisconsin-Madison

Your doctoral study should generally be low-risk research. As you move into a postdoctoral fellowship, think about having two studies—one low-risk, one high-risk with a potential for high impact. At this time you can begin to play the risk factor a little bit differently.

When you are tenure-track you can have a mix of significance with low-risk and high-risk studies. And when you are tenured, then you can go for high risk, clinical trials, and collaborations. Because you have established your independence, so you do not need to worry about losing your visibility. You can be recognized as a legitimate member of the team.

As you plan your career, you should take risk into account. Just as you manage your money taking risk into account, we should manage our careers taking risk into account. I have met people who did not really think about that, and they embarked on some very risky procedures and wasted a lot of time and resources with very little to show for it. For example, don’t put everything into an untested technology basket. You want to be using state of the art technology, but you want to be sure it is going to give you what you need.

Other Formats and Uses of Your Research Plan Audience Comments

  • If you do your job right with your job talk, there’s a lot of cross-pollination between your job talk and your research plan. Ideally your job talk tells your colleagues that this is the long-term plan that you have. And they shouldn’t be surprised when you submit a more detailed research plan. They should say, “okay this is very consistent with the job talk.” In my view, the job talk should be a crystal summary of the major aspects of that research program. Of course, much of the talk will be about a specific project or two—but it should always be embedded within the larger program. That helps the audience keep sight of the fact that you are looking at the program. You can say that this is one project that I’ve done, and I plan to do more of these, and this is how they are conceptually related. That’s a good example of why the research plan has multiple purposes – it can be a research statement, it can be the core of your job talk, it can be the nature of your elevator message, and it can be a version of your research plan for a K award application or R01 application or anything else of that nature.
  • I think what’s useful is to actually draft your NIH biosketch. The new biosketch has a section called “contributions to science.” It’s really helpful to think about all your projects. It’s hard to start with a blank sheet of paper. But to have it in the format of a biosketch can be really helpful.

Avoiding Overcommitment Audience Comments

  • One of the things that is amazing about planning is that if you put an estimate on the level of effort for each part of your plan, you’ll quickly find that you are living three or four lives. Some 300% of your time is spent. It’s helpful for those of us who might share my lack of ability to see constraints or limitations to reel it back and say, “I have a lot on my plate.” Which allows you to say no—which is not something we all do very well when it comes to those nice colleagues and those people you want to impress nationally and connect with. But it allows you to look at what’s planned and go, “I don’t know where I’d find the time to do that.” Which will hopefully help you stay on track.
  • I keep a to do list, but I also keep a “to not do” list. One of the things I will keep on my plan is the maximum number of papers I will review in a year. If I hit that number in March, that’s it. I say no to every other paper that comes down the pike. That’s something to work out with your mentor as far as what’s realistic and what’s okay for you. Every time I get a request, I think, “That’s my reading and writing time, so what am I willing to give up. If it means I won’t be able to write on my own paper this week, am I willing to do this?”

Staying on Schedule with Reading, Writing, and Reviewing Audience Comments

  • You have to do what works for you. Some people do wait for big blocks of time for writing—which are hard to come by. But the most important thing is to block off your time. Put it on your schedule, or it is the first thing that will get pushed aside.
  • Another thing I’ve done with some of my colleagues is writing retreats. So maybe once a year, twice a year, we’ll get together. Usually we’ll go to a hotel or somewhere, and we’re just writing. It’s a great way to get a jumpstart on a project. Like, I need to sit down and start this manuscript, and you can keep going once you’ve got that momentum.
  • My input would be that you really have to write all the time, every day. It’s a skill. I’ve found that if I take time off, my writing deteriorates. It’s something you need to keep up with.
  • I would look at it like a savings account that you put money into on a daily, weekly, monthly basis. The flip side of writing is reading. I would read constantly, widely, and not just in the discipline. That will give you not only a breadth in terms of your understanding of your field and the world around you, but it will also give you an incentive to make your own contributions. I think we don’t talk enough about the comprehensive side to this, and being receptive to the reading. I have a book, or something, by my bedside every night. And I read that until I fall asleep every night. And it’s done me in good stead over the years.
  • Reviewing articles can help advance your career, but it is something you need to weigh carefully as a draw on your time. You get a lot from it. You get to see what’s out there. You get to see what’s coming down the pipe before publication. To me that’s a huge benefit. You get to learn from other people’s writing, and that’s part of your reading you get to do. But it is time consuming. And it depends on the kinds of papers you get. Sometimes you’re lucky and sometimes you’re not.
  • If someone else is reviewing your grants and your articles, at some point you owe it back. You should at least be in break-even mode. Now, pre-tenure or postdoc your mentor should be doing that or senior faculty in the department. But there are so many articles to review. I review so many articles, but I am also at the tail end of my career. The bottom line is, if you don’t put on your schedule that if you don’t put time on your schedule for reading, reviewing articles forces you to look at and think about the literature, so you can be accomplishing what you owe back to the field—and at the same time, staying one step ahead knowledge wise. It forces you to do what you should be doing all along, which is keeping up with the literature.

Further Reading: Web Resources

Golash-Boza, T. (2014). In Response to Popular Demand, More on the 5-Year Plan. The Professor Is In . Available at http://theprofessorisin.com/2014/05/09/in-response-to-popular-demand-more-on-the-5-year-plan

Kelsky, K. (2010). The Five-Year Plan for Tenure-Track Professors. Get a life, PhD . Available at http://getalifephd.blogspot.com/2010/07/five-year-plan-for-tenure-track.html

National Association of Geoscience Teachers (NAGT). (2012). Planning Worksheets . Planning your Research Program (Available from the Science Education Resource Center at Carelton College Website at http://serc.carleton.edu/).

Pfirman, S., Bell, R., Culligan, P., Balsam, P. & Laird, J. (2008) . Maximizing Productivity and Recognition , Part 3: Developing a Research Plan. Science Careers. Available at http://sciencecareers.sciencemag.org/career_magazine/previous_issues/articles/2008_10_10/caredit.a0800148

Cathy Binger University of New Mexico

Lizbeth Finestack University of Minnesota

Based on a presentation and slides originally developed by Ray Kent, University of Wisconsin-Madison.

Presented at Pathways (2015). Hosted by the American Speech-Language-Hearing Association Research Mentoring Network.

Pathways is sponsored by the National Institute on Deafness and Other Communication Disorders (NIDCD) of the National Institutes of Health (NIH) through a U24 grant awarded to ASHA.

Copyrighted Material. Reproduced by the American Speech-Language-Hearing Association in the Clinical Research Education Library with permission from the author or presenter.

logoCREDHeader

Clinical Research Education

More from the cred library, innovative treatments for persons with dementia, implementation science resources for crisp, when the ears interact with the brain, follow asha journals on twitter.

logoAcademy_Revised_2

© 1997-2024 American Speech-Language-Hearing Association Privacy Notice Terms of Use

research plan of science

Illustration by James Round

How to plan a research project

Whether for a paper or a thesis, define your question, review the work of others – and leave yourself open to discovery.

by Brooke Harrington   + BIO

is professor of sociology at Dartmouth College in New Hampshire. Her research has won international awards both for scholarly quality and impact on public life. She has published dozens of articles and three books, most recently the bestseller Capital without Borders (2016), now translated into five languages.

Edited by Sam Haselby

Need to know

‘When curiosity turns to serious matters, it’s called research.’ – From Aphorisms (1880-1905) by Marie von Ebner-Eschenbach

Planning research projects is a time-honoured intellectual exercise: one that requires both creativity and sharp analytical skills. The purpose of this Guide is to make the process systematic and easy to understand. While there is a great deal of freedom and discovery involved – from the topics you choose, to the data and methods you apply – there are also some norms and constraints that obtain, no matter what your academic level or field of study. For those in high school through to doctoral students, and from art history to archaeology, research planning involves broadly similar steps, including: formulating a question, developing an argument or predictions based on previous research, then selecting the information needed to answer your question.

Some of this might sound self-evident but, as you’ll find, research requires a different way of approaching and using information than most of us are accustomed to in everyday life. That is why I include orienting yourself to knowledge-creation as an initial step in the process. This is a crucial and underappreciated phase in education, akin to making the transition from salaried employment to entrepreneurship: suddenly, you’re on your own, and that requires a new way of thinking about your work.

What follows is a distillation of what I’ve learned about this process over 27 years as a professional social scientist. It reflects the skills that my own professors imparted in the sociology doctoral programme at Harvard, as well as what I learned later on as a research supervisor for Ivy League PhD and MA students, and then as the author of award-winning scholarly books and articles. It can be adapted to the demands of both short projects (such as course term papers) and long ones, such as a thesis.

At its simplest, research planning involves the four distinct steps outlined below: orienting yourself to knowledge-creation; defining your research question; reviewing previous research on your question; and then choosing relevant data to formulate your own answers. Because the focus of this Guide is on planning a research project, as opposed to conducting a research project, this section won’t delve into the details of data-collection or analysis; those steps happen after you plan the project. In addition, the topic is vast: year-long doctoral courses are devoted to data and analysis. Instead, the fourth part of this section will outline some basic strategies you could use in planning a data-selection and analysis process appropriate to your research question.

Step 1: Orient yourself

Planning and conducting research requires you to make a transition, from thinking like a consumer of information to thinking like a producer of information. That sounds simple, but it’s actually a complex task. As a practical matter, this means putting aside the mindset of a student, which treats knowledge as something created by other people. As students, we are often passive receivers of knowledge: asked to do a specified set of readings, then graded on how well we reproduce what we’ve read.

Researchers, however, must take on an active role as knowledge producers . Doing research requires more of you than reading and absorbing what other people have written: you have to engage in a dialogue with it. That includes arguing with previous knowledge and perhaps trying to show that ideas we have accepted as given are actually wrong or incomplete. For example, rather than simply taking in the claims of an author you read, you’ll need to draw out the implications of those claims: if what the author is saying is true, what else does that suggest must be true? What predictions could you make based on the author’s claims?

In other words, rather than treating a reading as a source of truth – even if it comes from a revered source, such as Plato or Marie Curie – this orientation step asks you to treat the claims you read as provisional and subject to interrogation. That is one of the great pieces of wisdom that science and philosophy can teach us: that the biggest advances in human understanding have been made not by being correct about trivial things, but by being wrong in an interesting way . For example, Albert Einstein was wrong about quantum mechanics, but his arguments about it with his fellow physicist Niels Bohr have led to some of the biggest breakthroughs in science, even a century later.

Step 2: Define your research question

Students often give this step cursory attention, but experienced researchers know that formulating a good question is sometimes the most difficult part of the research planning process. That is because the precise language of the question frames the rest of the project. It’s therefore important to pose the question carefully, in a way that’s both possible to answer and likely to yield interesting results. Of course, you must choose a question that interests you, but that’s only the beginning of what’s likely to be an iterative process: most researchers come back to this step repeatedly, modifying their questions in light of previous research, resource limitations and other considerations.

Researchers face limits in terms of time and money. They, like everyone else, have to pose research questions that they can plausibly answer given the constraints they face. For example, it would be inadvisable to frame a project around the question ‘What are the roots of the Arab-Israeli conflict?’ if you have only a week to develop an answer and no background on that topic. That’s not to limit your imagination: you can come up with any question you’d like. But it typically does require some creativity to frame a question that you can answer well – that is, by investigating thoroughly and providing new insights – within the limits you face.

In addition to being interesting to you, and feasible within your resource constraints, the third and most important characteristic of a ‘good’ research topic is whether it allows you to create new knowledge. It might turn out that your question has already been asked and answered to your satisfaction: if so, you’ll find out in the next step of this process. On the other hand, you might come up with a research question that hasn’t been addressed previously. Before you get too excited about breaking uncharted ground, consider this: a lot of potentially researchable questions haven’t been studied for good reason ; they might have answers that are trivial or of very limited interest. This could include questions such as ‘Why does the area of a circle equal π r²?’ or ‘Did winter conditions affect Napoleon’s plans to invade Russia?’ Of course, you might be able to make the argument that a seemingly trivial question is actually vitally important, but you must be prepared to back that up with convincing evidence. The exercise in the ‘Learn More’ section below will help you think through some of these issues.

Finally, scholarly research questions must in some way lead to new and distinctive insights. For example, lots of people have studied gender roles in sports teams; what can you ask that hasn’t been asked before? Reinventing the wheel is the number-one no-no in this endeavour. That’s why the next step is so important: reviewing previous research on your topic. Depending on what you find in that step, you might need to revise your research question; iterating between your question and the existing literature is a normal process. But don’t worry: it doesn’t go on forever. In fact, the iterations taper off – and your research question stabilises – as you develop a firm grasp of the current state of knowledge on your topic.

Step 3: Review previous research

In academic research, from articles to books, it’s common to find a section called a ‘literature review’. The purpose of that section is to describe the state of the art in knowledge on the research question that a project has posed. It demonstrates that researchers have thoroughly and systematically reviewed the relevant findings of previous studies on their topic, and that they have something novel to contribute.

Your own research project should include something like this, even if it’s a high-school term paper. In the research planning process, you’ll want to list at least half a dozen bullet points stating the major findings on your topic by other people. In relation to those findings, you should be able to specify where your project could provide new and necessary insights. There are two basic rhetorical positions one can take in framing the novelty-plus-importance argument required of academic research:

  • Position 1 requires you to build on or extend a set of existing ideas; that means saying something like: ‘Person A has argued that X is true about gender; this implies Y, which has not yet been tested. My project will test Y, and if I find evidence to support it, that will change the way we understand gender.’
  • Position 2 is to argue that there is a gap in existing knowledge, either because previous research has reached conflicting conclusions or has failed to consider something important. For example, one could say that research on middle schoolers and gender has been limited by being conducted primarily in coeducational environments, and that findings might differ dramatically if research were conducted in more schools where the student body was all-male or all-female.

Your overall goal in this step of the process is to show that your research will be part of a larger conversation: that is, how your project flows from what’s already known, and how it advances, extends or challenges that existing body of knowledge. That will be the contribution of your project, and it constitutes the motivation for your research.

Two things are worth mentioning about your search for sources of relevant previous research. First, you needn’t look only at studies on your precise topic. For example, if you want to study gender-identity formation in schools, you shouldn’t restrict yourself to studies of schools; the empirical setting (schools) is secondary to the larger social process that interests you (how people form gender identity). That process occurs in many different settings, so cast a wide net. Second, be sure to use legitimate sources – meaning publications that have been through some sort of vetting process, whether that involves peer review (as with academic journal articles you might find via Google Scholar) or editorial review (as you’d find in well-known mass media publications, such as The Economist or The Washington Post ). What you’ll want to avoid is using unvetted sources such as personal blogs or Wikipedia. Why? Because anybody can write anything in those forums, and there is no way to know – unless you’re already an expert – if the claims you find there are accurate. Often, they’re not.

Step 4: Choose your data and methods

Whatever your research question is, eventually you’ll need to consider which data source and analytical strategy are most likely to provide the answers you’re seeking. One starting point is to consider whether your question would be best addressed by qualitative data (such as interviews, observations or historical records), quantitative data (such as surveys or census records) or some combination of both. Your ideas about data sources will, in turn, suggest options for analytical methods.

You might need to collect your own data, or you might find everything you need readily available in an existing dataset someone else has created. A great place to start is with a research librarian: university libraries always have them and, at public universities, those librarians can work with the public, including people who aren’t affiliated with the university. If you don’t happen to have a public university and its library close at hand, an ordinary public library can still be a good place to start: the librarians are often well versed in accessing data sources that might be relevant to your study, such as the census, or historical archives, or the Survey of Consumer Finances.

Because your task at this point is to plan research, rather than conduct it, the purpose of this step is not to commit you irrevocably to a course of action. Instead, your goal here is to think through a feasible approach to answering your research question. You’ll need to find out, for example, whether the data you want exist; if not, do you have a realistic chance of gathering the data yourself, or would it be better to modify your research question? In terms of analysis, would your strategy require you to apply statistical methods? If so, do you have those skills? If not, do you have time to learn them, or money to hire a research assistant to run the analysis for you?

Please be aware that qualitative methods in particular are not the casual undertaking they might appear to be. Many people make the mistake of thinking that only quantitative data and methods are scientific and systematic, while qualitative methods are just a fancy way of saying: ‘I talked to some people, read some old newspapers, and drew my own conclusions.’ Nothing could be further from the truth. In the final section of this guide, you’ll find some links to resources that will provide more insight on standards and procedures governing qualitative research, but suffice it to say: there are rules about what constitutes legitimate evidence and valid analytical procedure for qualitative data, just as there are for quantitative data.

Circle back and consider revising your initial plans

As you work through these four steps in planning your project, it’s perfectly normal to circle back and revise. Research planning is rarely a linear process. It’s also common for new and unexpected avenues to suggest themselves. As the sociologist Thorstein Veblen wrote in 1908 : ‘The outcome of any serious research can only be to make two questions grow where only one grew before.’ That’s as true of research planning as it is of a completed project. Try to enjoy the horizons that open up for you in this process, rather than becoming overwhelmed; the four steps, along with the two exercises that follow, will help you focus your plan and make it manageable.

Key points – How to plan a research project

  • Planning a research project is essential no matter your academic level or field of study. There is no one ‘best’ way to design research, but there are certain guidelines that can be helpfully applied across disciplines.
  • Orient yourself to knowledge-creation. Make the shift from being a consumer of information to being a producer of information.
  • Define your research question. Your question frames the rest of your project, sets the scope, and determines the kinds of answers you can find.
  • Review previous research on your question. Survey the existing body of relevant knowledge to ensure that your research will be part of a larger conversation.
  • Choose your data and methods. For instance, will you be collecting qualitative data, via interviews, or numerical data, via surveys?
  • Circle back and consider revising your initial plans. Expect your research question in particular to undergo multiple rounds of refinement as you learn more about your topic.

Good research questions tend to beget more questions. This can be frustrating for those who want to get down to business right away. Try to make room for the unexpected: this is usually how knowledge advances. Many of the most significant discoveries in human history have been made by people who were looking for something else entirely. There are ways to structure your research planning process without over-constraining yourself; the two exercises below are a start, and you can find further methods in the Links and Books section.

The following exercise provides a structured process for advancing your research project planning. After completing it, you’ll be able to do the following:

  • describe clearly and concisely the question you’ve chosen to study
  • summarise the state of the art in knowledge about the question, and where your project could contribute new insight
  • identify the best strategy for gathering and analysing relevant data

In other words, the following provides a systematic means to establish the building blocks of your research project.

Exercise 1: Definition of research question and sources

This exercise prompts you to select and clarify your general interest area, develop a research question, and investigate sources of information. The annotated bibliography will also help you refine your research question so that you can begin the second assignment, a description of the phenomenon you wish to study.

Jot down a few bullet points in response to these two questions, with the understanding that you’ll probably go back and modify your answers as you begin reading other studies relevant to your topic:

  • What will be the general topic of your paper?
  • What will be the specific topic of your paper?

b) Research question(s)

Use the following guidelines to frame a research question – or questions – that will drive your analysis. As with Part 1 above, you’ll probably find it necessary to change or refine your research question(s) as you complete future assignments.

  • Your question should be phrased so that it can’t be answered with a simple ‘yes’ or ‘no’.
  • Your question should have more than one plausible answer.
  • Your question should draw relationships between two or more concepts; framing the question in terms of How? or What? often works better than asking Why ?

c) Annotated bibliography

Most or all of your background information should come from two sources: scholarly books and journals, or reputable mass media sources. You might be able to access journal articles electronically through your library, using search engines such as JSTOR and Google Scholar. This can save you a great deal of time compared with going to the library in person to search periodicals. General news sources, such as those accessible through LexisNexis, are acceptable, but should be cited sparingly, since they don’t carry the same level of credibility as scholarly sources. As discussed above, unvetted sources such as blogs and Wikipedia should be avoided, because the quality of the information they provide is unreliable and often misleading.

To create an annotated bibliography, provide the following information for at least 10 sources relevant to your specific topic, using the format suggested below.

Name of author(s):
Publication date:
Title of book, chapter, or article:
If a chapter or article, title of journal or book where they appear:
Brief description of this work, including main findings and methods ( c 75 words):
Summary of how this work contributes to your project ( c 75 words):
Brief description of the implications of this work ( c 25 words):
Identify any gap or controversy in knowledge this work points up, and how your project could address those problems ( c 50 words):

Exercise 2: Towards an analysis

Develop a short statement ( c 250 words) about the kind of data that would be useful to address your research question, and how you’d analyse it. Some questions to consider in writing this statement include:

  • What are the central concepts or variables in your project? Offer a brief definition of each.
  • Do any data sources exist on those concepts or variables, or would you need to collect data?
  • Of the analytical strategies you could apply to that data, which would be the most appropriate to answer your question? Which would be the most feasible for you? Consider at least two methods, noting their advantages or disadvantages for your project.

Links & books

One of the best texts ever written about planning and executing research comes from a source that might be unexpected: a 60-year-old work on urban planning by a self-trained scholar. The classic book The Death and Life of Great American Cities (1961) by Jane Jacobs (available complete and free of charge via this link ) is worth reading in its entirety just for the pleasure of it. But the final 20 pages – a concluding chapter titled ‘The Kind of Problem a City Is’ – are really about the process of thinking through and investigating a problem. Highly recommended as a window into the craft of research.

Jacobs’s text references an essay on advancing human knowledge by the mathematician Warren Weaver. At the time, Weaver was director of the Rockefeller Foundation, in charge of funding basic research in the natural and medical sciences. Although the essay is titled ‘A Quarter Century in the Natural Sciences’ (1960) and appears at first blush to be merely a summation of one man’s career, it turns out to be something much bigger and more interesting: a meditation on the history of human beings seeking answers to big questions about the world. Weaver goes back to the 17th century to trace the origins of systematic research thinking, with enthusiasm and vivid anecdotes that make the process come alive. The essay is worth reading in its entirety, and is available free of charge via this link .

For those seeking a more in-depth, professional-level discussion of the logic of research design, the political scientist Harvey Starr provides insight in a compact format in the article ‘Cumulation from Proper Specification: Theory, Logic, Research Design, and “Nice” Laws’ (2005). Starr reviews the ‘research triad’, consisting of the interlinked considerations of formulating a question, selecting relevant theories and applying appropriate methods. The full text of the article, published in the scholarly journal Conflict Management and Peace Science , is available, free of charge, via this link .

Finally, the book Getting What You Came For (1992) by Robert Peters is not only an outstanding guide for anyone contemplating graduate school – from the application process onward – but it also includes several excellent chapters on planning and executing research, applicable across a wide variety of subject areas. It was an invaluable resource for me 25 years ago, and it remains in print with good reason; I recommend it to all my students, particularly Chapter 16 (‘The Thesis Topic: Finding It’), Chapter 17 (‘The Thesis Proposal’) and Chapter 18 (‘The Thesis: Writing It’).

Two people are on top of a craggy hill in lakeland scenery in winter. They look small against a big sky

Nature and the environment

How to rewild yourself

You didn’t evolve to live in this techno-industrialised world. Find health and happiness by embracing your wild nature

by Jessica Carew Kraft

research plan of science

How to express your grief

The initial shock might be over. But you need time and space to ‘ride the wave’ of grief if you are to find a sense of peace

by Sue Morris

research plan of science

Conflict and conflict resolution

How to deal with being bullied at work

You might understandably feel trapped and powerless, but there is a range of steps you can take to improve your situation

by Pat Ferris

ThePhDHub

How to Prepare a PhD Research Plan/Schedule?

PhD research plan is a structured schedule for completing different objectives and milestones during a given timeframe. Scholars are usually unaware of it. Let us find out how to prepare it. 

Between March 2021 to 2022, I read almost 15 different research proposals from students (for their projects) and only a single one, I found, with a comprehensive research plan for 3 years. Which is still not, kind of practical, probably copied from other students. 

Such entities are not known to over 90% of students, if some know that because their university asked for but unfortunately, this basic procedure lacks penetration among students. I don’t know the exact reason, but students lack a basic understanding of the research process. 

Meaning, that they don’t know or perhaps don’t complete their course work needly. PhD research requires many documents, SOPs and write-ups, before even starting it. For example, a rough research plan, research proposal, initial interview, competence screening, grant proposal and so on. 

However, the requirement varies among universities and thus knowledge regarding basic procedures often also varies among students. So I’m not blaming students but certainly, it is the fault of the university side, as well.  

When you come up with a research proposal with a research schedule or entire plant, certainly it will create a positive image and good reputation. So it is important. But how to prepare it? 

Hey, there I’m Dr Tushar, a PhD tutor and coach. In this article, we will understand how we can prepare a structured plan for the PhD research and how to execute it. 

So let’s get started.  

How to prepare a PhD research plan/schedule?

A PhD research plan or schedule can be prepared using the GANTT chart which includes a month, semester or year-wise planning of the entire PhD research work. 

First, enlist goals and objectives.

It’s not about your research objective enlisted in your proposal. I’m talking about the objectives of your PhD. Take a look at some of the objectives.

Note that these are all the objectives that should be completed during the PhD, but not limited to a specific subject. Note you have to show how you can complete or achieve each objective during the entire tenure of your work. 

And that is what the plan/schedule is all about. Next, explain the time duration. The time required to complete each goal, roughly. For example, a semester or a year to complete the course work or 4 to 8 months for completion of ethical approval. 

Now two things must be known to you, at this point in time. 

  • First, enlist the time required to complete each objective, as aforementioned. 
  • Second, what goals would you complete during each semester?

For instance, course work takes a semester to complete, but during the period a scholar can also craft their PhD research title, research proposal, ethical approval and grant proposals. 

Now it is also crucial to know that there is no time bound to complete goals, but it should be completed as you explained. Let’s say you can plant it for 3 years, 4 or even 5 years depending on the weightage of your work. 

In summary, the answer to the question of how to prepare a research plan is, 

  • Enlist your goals or objectives. 
  • Decide the time required to complete each goal.
  • Prepare a GANTT chart.  

Now you have prepared zero-date planning for your research but how to present it? The answer is a GANTT chart.   

GANTT chart for PhD research plan: 

GANTT chart is a task manager and graphical presentation of how and how many tasks are completed or should be completed against a given time duration. Take a look at the image below. 

The example of the GANTT chart.

How can you prepare one?

Open MS Excel (on Windows) or numbers (on Mac).

Enlist goals or objectives in a column. 

Enlist years (duration of PhD) in a row and bifurcate them into individual semesters. You can also prepare a month-wise plan, that’s totally up to you. In my opinion, semester-wise planning is good because research is a lengthy and time-consuming process. So monthly planning would not work. 

To make a chart more attractive and readable use colors, as I used. Now mark a ‘cell’ against a column and row showing the objective which you are going to complete in a semester. Take a look. 

After the end of this, your GANTT chart would look like this. 

A screenshot of an ideal GANTT chart.

You can prepare a month-wise planning, individual semester-wise planning and goal-wise planning etc. I will explain these things in upcoming articles on 5 different types of GANTT charts for PhD.  

Custom writing services: 

If you find difficulties in preparing a research plan, synopsis, proposal or GANTT chart. We can work on behalf of you. Our costume services are, 

  • Synopsis writing 
  • Project writing 
  • Research proposal writing 
  • Research planning and GANTT chart preparation. 

You can contact us at [email protected] or [email protected] to get more information. 

Wrapping up: 

Planning and executing a research schedule are two different things. Oftentimes, students just prepare as per the requirements and then do work as per their convenience. Then they are stuck in one place and just work around the time. 

Plan things. Make your own GANTT chart, put it on your work table or stick it on a wall so that you can see it daily. Try to achieve each goal in time. Trust me things will work and you will complete your PhD before anyone else.  

Dr Tushar Chauhan

Dr. Tushar Chauhan is a Scientist, Blogger and Scientific-writer. He has completed PhD in Genetics. Dr. Chauhan is a PhD coach and tutor.

Share this:

research plan of science

  • Share on Facebook
  • Share on Twitter
  • Share on Pinterest
  • Share on Linkedin
  • Share via Email

About The Author

' src=

Dr Tushar Chauhan

Related posts.

research plan of science

Why is it called a Doctor of Philosophy?

PhD viva voce session

Preparing for a PhD Viva

Leave a comment cancel reply.

Your email address will not be published. Required fields are marked *

Save my name, email, and website in this browser for the next time I comment.

Notify me of follow-up comments by email.

Notify me of new posts by email.

U.S. flag

An official website of the United States government

The .gov means it’s official. Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

The site is secure. The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

  • Publications
  • Account settings
  • Advanced Search
  • Journal List
  • Turk J Anaesthesiol Reanim
  • v.44(4); 2016 Aug

Logo of tjar

What is Scientific Research and How Can it be Done?

Scientific researches are studies that should be systematically planned before performing them. In this review, classification and description of scientific studies, planning stage randomisation and bias are explained.

Research conducted for the purpose of contributing towards science by the systematic collection, interpretation and evaluation of data and that, too, in a planned manner is called scientific research: a researcher is the one who conducts this research. The results obtained from a small group through scientific studies are socialised, and new information is revealed with respect to diagnosis, treatment and reliability of applications. The purpose of this review is to provide information about the definition, classification and methodology of scientific research.

Before beginning the scientific research, the researcher should determine the subject, do planning and specify the methodology. In the Declaration of Helsinki, it is stated that ‘the primary purpose of medical researches on volunteers is to understand the reasons, development and effects of diseases and develop protective, diagnostic and therapeutic interventions (method, operation and therapies). Even the best proven interventions should be evaluated continuously by investigations with regard to reliability, effectiveness, efficiency, accessibility and quality’ ( 1 ).

The questions, methods of response to questions and difficulties in scientific research may vary, but the design and structure are generally the same ( 2 ).

Classification of Scientific Research

Scientific research can be classified in several ways. Classification can be made according to the data collection techniques based on causality, relationship with time and the medium through which they are applied.

  • Observational
  • Experimental
  • Descriptive
  • Retrospective
  • Prospective
  • Cross-sectional
  • Social descriptive research ( 3 )

Another method is to classify the research according to its descriptive or analytical features. This review is written according to this classification method.

I. Descriptive research

  • Case series
  • Surveillance studies

II. Analytical research

  • Observational studies: cohort, case control and cross- sectional research
  • Interventional research: quasi-experimental and clinical research
  • Case Report: it is the most common type of descriptive study. It is the examination of a single case having a different quality in the society, e.g. conducting general anaesthesia in a pregnant patient with mucopolysaccharidosis.
  • Case Series: it is the description of repetitive cases having common features. For instance; case series involving interscapular pain related to neuraxial labour analgesia. Interestingly, malignant hyperthermia cases are not accepted as case series since they are rarely seen during historical development.
  • Surveillance Studies: these are the results obtained from the databases that follow and record a health problem for a certain time, e.g. the surveillance of cross-infections during anaesthesia in the intensive care unit.

Moreover, some studies may be experimental. After the researcher intervenes, the researcher waits for the result, observes and obtains data. Experimental studies are, more often, in the form of clinical trials or laboratory animal trials ( 2 ).

Analytical observational research can be classified as cohort, case-control and cross-sectional studies.

Firstly, the participants are controlled with regard to the disease under investigation. Patients are excluded from the study. Healthy participants are evaluated with regard to the exposure to the effect. Then, the group (cohort) is followed-up for a sufficient period of time with respect to the occurrence of disease, and the progress of disease is studied. The risk of the healthy participants getting sick is considered an incident. In cohort studies, the risk of disease between the groups exposed and not exposed to the effect is calculated and rated. This rate is called relative risk. Relative risk indicates the strength of exposure to the effect on the disease.

Cohort research may be observational and experimental. The follow-up of patients prospectively is called a prospective cohort study . The results are obtained after the research starts. The researcher’s following-up of cohort subjects from a certain point towards the past is called a retrospective cohort study . Prospective cohort studies are more valuable than retrospective cohort studies: this is because in the former, the researcher observes and records the data. The researcher plans the study before the research and determines what data will be used. On the other hand, in retrospective studies, the research is made on recorded data: no new data can be added.

In fact, retrospective and prospective studies are not observational. They determine the relationship between the date on which the researcher has begun the study and the disease development period. The most critical disadvantage of this type of research is that if the follow-up period is long, participants may leave the study at their own behest or due to physical conditions. Cohort studies that begin after exposure and before disease development are called ambidirectional studies . Public healthcare studies generally fall within this group, e.g. lung cancer development in smokers.

  • Case-Control Studies: these studies are retrospective cohort studies. They examine the cause and effect relationship from the effect to the cause. The detection or determination of data depends on the information recorded in the past. The researcher has no control over the data ( 2 ).

Cross-sectional studies are advantageous since they can be concluded relatively quickly. It may be difficult to obtain a reliable result from such studies for rare diseases ( 2 ).

Cross-sectional studies are characterised by timing. In such studies, the exposure and result are simultaneously evaluated. While cross-sectional studies are restrictedly used in studies involving anaesthesia (since the process of exposure is limited), they can be used in studies conducted in intensive care units.

  • Quasi-Experimental Research: they are conducted in cases in which a quick result is requested and the participants or research areas cannot be randomised, e.g. giving hand-wash training and comparing the frequency of nosocomial infections before and after hand wash.
  • Clinical Research: they are prospective studies carried out with a control group for the purpose of comparing the effect and value of an intervention in a clinical case. Clinical study and research have the same meaning. Drugs, invasive interventions, medical devices and operations, diets, physical therapy and diagnostic tools are relevant in this context ( 6 ).

Clinical studies are conducted by a responsible researcher, generally a physician. In the research team, there may be other healthcare staff besides physicians. Clinical studies may be financed by healthcare institutes, drug companies, academic medical centres, volunteer groups, physicians, healthcare service providers and other individuals. They may be conducted in several places including hospitals, universities, physicians’ offices and community clinics based on the researcher’s requirements. The participants are made aware of the duration of the study before their inclusion. Clinical studies should include the evaluation of recommendations (drug, device and surgical) for the treatment of a disease, syndrome or a comparison of one or more applications; finding different ways for recognition of a disease or case and prevention of their recurrence ( 7 ).

Clinical Research

In this review, clinical research is explained in more detail since it is the most valuable study in scientific research.

Clinical research starts with forming a hypothesis. A hypothesis can be defined as a claim put forward about the value of a population parameter based on sampling. There are two types of hypotheses in statistics.

  • H 0 hypothesis is called a control or null hypothesis. It is the hypothesis put forward in research, which implies that there is no difference between the groups under consideration. If this hypothesis is rejected at the end of the study, it indicates that a difference exists between the two treatments under consideration.
  • H 1 hypothesis is called an alternative hypothesis. It is hypothesised against a null hypothesis, which implies that a difference exists between the groups under consideration. For example, consider the following hypothesis: drug A has an analgesic effect. Control or null hypothesis (H 0 ): there is no difference between drug A and placebo with regard to the analgesic effect. The alternative hypothesis (H 1 ) is applicable if a difference exists between drug A and placebo with regard to the analgesic effect.

The planning phase comes after the determination of a hypothesis. A clinical research plan is called a protocol . In a protocol, the reasons for research, number and qualities of participants, tests to be applied, study duration and what information to be gathered from the participants should be found and conformity criteria should be developed.

The selection of participant groups to be included in the study is important. Inclusion and exclusion criteria of the study for the participants should be determined. Inclusion criteria should be defined in the form of demographic characteristics (age, gender, etc.) of the participant group and the exclusion criteria as the diseases that may influence the study, age ranges, cases involving pregnancy and lactation, continuously used drugs and participants’ cooperation.

The next stage is methodology. Methodology can be grouped under subheadings, namely, the calculation of number of subjects, blinding (masking), randomisation, selection of operation to be applied, use of placebo and criteria for stopping and changing the treatment.

I. Calculation of the Number of Subjects

The entire source from which the data are obtained is called a universe or population . A small group selected from a certain universe based on certain rules and which is accepted to highly represent the universe from which it is selected is called a sample and the characteristics of the population from which the data are collected are called variables. If data is collected from the entire population, such an instance is called a parameter . Conducting a study on the sample rather than the entire population is easier and less costly. Many factors influence the determination of the sample size. Firstly, the type of variable should be determined. Variables are classified as categorical (qualitative, non-numerical) or numerical (quantitative). Individuals in categorical variables are classified according to their characteristics. Categorical variables are indicated as nominal and ordinal (ordered). In nominal variables, the application of a category depends on the researcher’s preference. For instance, a female participant can be considered first and then the male participant, or vice versa. An ordinal (ordered) variable is ordered from small to large or vice versa (e.g. ordering obese patients based on their weights-from the lightest to the heaviest or vice versa). A categorical variable may have more than one characteristic: such variables are called binary or dichotomous (e.g. a participant may be both female and obese).

If the variable has numerical (quantitative) characteristics and these characteristics cannot be categorised, then it is called a numerical variable. Numerical variables are either discrete or continuous. For example, the number of operations with spinal anaesthesia represents a discrete variable. The haemoglobin value or height represents a continuous variable.

Statistical analyses that need to be employed depend on the type of variable. The determination of variables is necessary for selecting the statistical method as well as software in SPSS. While categorical variables are presented as numbers and percentages, numerical variables are represented using measures such as mean and standard deviation. It may be necessary to use mean in categorising some cases such as the following: even though the variable is categorical (qualitative, non-numerical) when Visual Analogue Scale (VAS) is used (since a numerical value is obtained), it is classified as a numerical variable: such variables are averaged.

Clinical research is carried out on the sample and generalised to the population. Accordingly, the number of samples should be correctly determined. Different sample size formulas are used on the basis of the statistical method to be used. When the sample size increases, error probability decreases. The sample size is calculated based on the primary hypothesis. The determination of a sample size before beginning the research specifies the power of the study. Power analysis enables the acquisition of realistic results in the research, and it is used for comparing two or more clinical research methods.

Because of the difference in the formulas used in calculating power analysis and number of samples for clinical research, it facilitates the use of computer programs for making calculations.

It is necessary to know certain parameters in order to calculate the number of samples by power analysis.

  • Type-I (α) and type-II (β) error levels
  • Difference between groups (d-difference) and effect size (ES)
  • Distribution ratio of groups
  • Direction of research hypothesis (H1)

a. Type-I (α) and Type-II (β) Error (β) Levels

Two types of errors can be made while accepting or rejecting H 0 hypothesis in a hypothesis test. Type-I error (α) level is the probability of finding a difference at the end of the research when there is no difference between the two applications. In other words, it is the rejection of the hypothesis when H 0 is actually correct and it is known as α error or p value. For instance, when the size is determined, type-I error level is accepted as 0.05 or 0.01.

Another error that can be made during a hypothesis test is a type-II error. It is the acceptance of a wrongly hypothesised H 0 hypothesis. In fact, it is the probability of failing to find a difference when there is a difference between the two applications. The power of a test is the ability of that test to find a difference that actually exists. Therefore, it is related to the type-II error level.

Since the type-II error risk is expressed as β, the power of the test is defined as 1–β. When a type-II error is 0.20, the power of the test is 0.80. Type-I (α) and type-II (β) errors can be intentional. The reason to intentionally make such an error is the necessity to look at the events from the opposite perspective.

b. Difference between Groups and ES

ES is defined as the state in which statistical difference also has clinically significance: ES≥0.5 is desirable. The difference between groups is the absolute difference between the groups compared in clinical research.

c. Allocation Ratio of Groups

The allocation ratio of groups is effective in determining the number of samples. If the number of samples is desired to be determined at the lowest level, the rate should be kept as 1/1.

d. Direction of Hypothesis (H1)

The direction of hypothesis in clinical research may be one-sided or two-sided. While one-sided hypotheses hypothesis test differences in the direction of size, two-sided hypotheses hypothesis test differences without direction. The power of the test in two-sided hypotheses is lower than one-sided hypotheses.

After these four variables are determined, they are entered in the appropriate computer program and the number of samples is calculated. Statistical packaged software programs such as Statistica, NCSS and G-Power may be used for power analysis and calculating the number of samples. When the samples size is calculated, if there is a decrease in α, difference between groups, ES and number of samples, then the standard deviation increases and power decreases. The power in two-sided hypothesis is lower. It is ethically appropriate to consider the determination of sample size, particularly in animal experiments, at the beginning of the study. The phase of the study is also important in the determination of number of subjects to be included in drug studies. Usually, phase-I studies are used to determine the safety profile of a drug or product, and they are generally conducted on a few healthy volunteers. If no unacceptable toxicity is detected during phase-I studies, phase-II studies may be carried out. Phase-II studies are proof-of-concept studies conducted on a larger number (100–500) of volunteer patients. When the effectiveness of the drug or product is evident in phase-II studies, phase-III studies can be initiated. These are randomised, double-blinded, placebo or standard treatment-controlled studies. Volunteer patients are periodically followed-up with respect to the effectiveness and side effects of the drug. It can generally last 1–4 years and is valuable during licensing and releasing the drug to the general market. Then, phase-IV studies begin in which long-term safety is investigated (indication, dose, mode of application, safety, effectiveness, etc.) on thousands of volunteer patients.

II. Blinding (Masking) and Randomisation Methods

When the methodology of clinical research is prepared, precautions should be taken to prevent taking sides. For this reason, techniques such as randomisation and blinding (masking) are used. Comparative studies are the most ideal ones in clinical research.

Blinding Method

A case in which the treatments applied to participants of clinical research should be kept unknown is called the blinding method . If the participant does not know what it receives, it is called a single-blind study; if even the researcher does not know, it is called a double-blind study. When there is a probability of knowing which drug is given in the order of application, when uninformed staff administers the drug, it is called in-house blinding. In case the study drug is known in its pharmaceutical form, a double-dummy blinding test is conducted. Intravenous drug is given to one group and a placebo tablet is given to the comparison group; then, the placebo tablet is given to the group that received the intravenous drug and intravenous drug in addition to placebo tablet is given to the comparison group. In this manner, each group receives both the intravenous and tablet forms of the drug. In case a third party interested in the study is involved and it also does not know about the drug (along with the statistician), it is called third-party blinding.

Randomisation Method

The selection of patients for the study groups should be random. Randomisation methods are used for such selection, which prevent conscious or unconscious manipulations in the selection of patients ( 8 ).

No factor pertaining to the patient should provide preference of one treatment to the other during randomisation. This characteristic is the most important difference separating randomised clinical studies from prospective and synchronous studies with experimental groups. Randomisation strengthens the study design and enables the determination of reliable scientific knowledge ( 2 ).

The easiest method is simple randomisation, e.g. determination of the type of anaesthesia to be administered to a patient by tossing a coin. In this method, when the number of samples is kept high, a balanced distribution is created. When the number of samples is low, there will be an imbalance between the groups. In this case, stratification and blocking have to be added to randomisation. Stratification is the classification of patients one or more times according to prognostic features determined by the researcher and blocking is the selection of a certain number of patients for each stratification process. The number of stratification processes should be determined at the beginning of the study.

As the number of stratification processes increases, performing the study and balancing the groups become difficult. For this reason, stratification characteristics and limitations should be effectively determined at the beginning of the study. It is not mandatory for the stratifications to have equal intervals. Despite all the precautions, an imbalance might occur between the groups before beginning the research. In such circumstances, post-stratification or restandardisation may be conducted according to the prognostic factors.

The main characteristic of applying blinding (masking) and randomisation is the prevention of bias. Therefore, it is worthwhile to comprehensively examine bias at this stage.

Bias and Chicanery

While conducting clinical research, errors can be introduced voluntarily or involuntarily at a number of stages, such as design, population selection, calculating the number of samples, non-compliance with study protocol, data entry and selection of statistical method. Bias is taking sides of individuals in line with their own decisions, views and ideological preferences ( 9 ). In order for an error to lead to bias, it has to be a systematic error. Systematic errors in controlled studies generally cause the results of one group to move in a different direction as compared to the other. It has to be understood that scientific research is generally prone to errors. However, random errors (or, in other words, ‘the luck factor’-in which bias is unintended-do not lead to bias ( 10 ).

Another issue, which is different from bias, is chicanery. It is defined as voluntarily changing the interventions, results and data of patients in an unethical manner or copying data from other studies. Comparatively, bias may not be done consciously.

In case unexpected results or outliers are found while the study is analysed, if possible, such data should be re-included into the study since the complete exclusion of data from a study endangers its reliability. In such a case, evaluation needs to be made with and without outliers. It is insignificant if no difference is found. However, if there is a difference, the results with outliers are re-evaluated. If there is no error, then the outlier is included in the study (as the outlier may be a result). It should be noted that re-evaluation of data in anaesthesiology is not possible.

Statistical evaluation methods should be determined at the design stage so as not to encounter unexpected results in clinical research. The data should be evaluated before the end of the study and without entering into details in research that are time-consuming and involve several samples. This is called an interim analysis . The date of interim analysis should be determined at the beginning of the study. The purpose of making interim analysis is to prevent unnecessary cost and effort since it may be necessary to conclude the research after the interim analysis, e.g. studies in which there is no possibility to validate the hypothesis at the end or the occurrence of different side effects of the drug to be used. The accuracy of the hypothesis and number of samples are compared. Statistical significance levels in interim analysis are very important. If the data level is significant, the hypothesis is validated even if the result turns out to be insignificant after the date of the analysis.

Another important point to be considered is the necessity to conclude the participants’ treatment within the period specified in the study protocol. When the result of the study is achieved earlier and unexpected situations develop, the treatment is concluded earlier. Moreover, the participant may quit the study at its own behest, may die or unpredictable situations (e.g. pregnancy) may develop. The participant can also quit the study whenever it wants, even if the study has not ended ( 7 ).

In case the results of a study are contrary to already known or expected results, the expected quality level of the study suggesting the contradiction may be higher than the studies supporting what is known in that subject. This type of bias is called confirmation bias. The presence of well-known mechanisms and logical inference from them may create problems in the evaluation of data. This is called plausibility bias.

Another type of bias is expectation bias. If a result different from the known results has been achieved and it is against the editor’s will, it can be challenged. Bias may be introduced during the publication of studies, such as publishing only positive results, selection of study results in a way to support a view or prevention of their publication. Some editors may only publish research that extols only the positive results or results that they desire.

Bias may be introduced for advertisement or economic reasons. Economic pressure may be applied on the editor, particularly in the cases of studies involving drugs and new medical devices. This is called commercial bias.

In recent years, before beginning a study, it has been recommended to record it on the Web site www.clinicaltrials.gov for the purpose of facilitating systematic interpretation and analysis in scientific research, informing other researchers, preventing bias, provision of writing in a standard format, enhancing contribution of research results to the general literature and enabling early intervention of an institution for support. This Web site is a service of the US National Institutes of Health.

The last stage in the methodology of clinical studies is the selection of intervention to be conducted. Placebo use assumes an important place in interventions. In Latin, placebo means ‘I will be fine’. In medical literature, it refers to substances that are not curative, do not have active ingredients and have various pharmaceutical forms. Although placebos do not have active drug characteristic, they have shown effective analgesic characteristics, particularly in algology applications; further, its use prevents bias in comparative studies. If a placebo has a positive impact on a participant, it is called the placebo effect ; on the contrary, if it has a negative impact, it is called the nocebo effect . Another type of therapy that can be used in clinical research is sham application. Although a researcher does not cure the patient, the researcher may compare those who receive therapy and undergo sham. It has been seen that sham therapies also exhibit a placebo effect. In particular, sham therapies are used in acupuncture applications ( 11 ). While placebo is a substance, sham is a type of clinical application.

Ethically, the patient has to receive appropriate therapy. For this reason, if its use prevents effective treatment, it causes great problem with regard to patient health and legalities.

Before medical research is conducted with human subjects, predictable risks, drawbacks and benefits must be evaluated for individuals or groups participating in the study. Precautions must be taken for reducing the risk to a minimum level. The risks during the study should be followed, evaluated and recorded by the researcher ( 1 ).

After the methodology for a clinical study is determined, dealing with the ‘Ethics Committee’ forms the next stage. The purpose of the ethics committee is to protect the rights, safety and well-being of volunteers taking part in the clinical research, considering the scientific method and concerns of society. The ethics committee examines the studies presented in time, comprehensively and independently, with regard to ethics and science; in line with the Declaration of Helsinki and following national and international standards concerning ‘Good Clinical Practice’. The method to be followed in the formation of the ethics committee should be developed without any kind of prejudice and to examine the applications with regard to ethics and science within the framework of the ethics committee, Regulation on Clinical Trials and Good Clinical Practice ( www.iku.com ). The necessary documents to be presented to the ethics committee are research protocol, volunteer consent form, budget contract, Declaration of Helsinki, curriculum vitae of researchers, similar or explanatory literature samples, supporting institution approval certificate and patient follow-up form.

Only one sister/brother, mother, father, son/daughter and wife/husband can take charge in the same ethics committee. A rector, vice rector, dean, deputy dean, provincial healthcare director and chief physician cannot be members of the ethics committee.

Members of the ethics committee can work as researchers or coordinators in clinical research. However, during research meetings in which members of the ethics committee are researchers or coordinators, they must leave the session and they cannot sign-off on decisions. If the number of members in the ethics committee for a particular research is so high that it is impossible to take a decision, the clinical research is presented to another ethics committee in the same province. If there is no ethics committee in the same province, an ethics committee in the closest settlement is found.

Thereafter, researchers need to inform the participants using an informed consent form. This form should explain the content of clinical study, potential benefits of the study, alternatives and risks (if any). It should be easy, comprehensible, conforming to spelling rules and written in plain language understandable by the participant.

This form assists the participants in taking a decision regarding participation in the study. It should aim to protect the participants. The participant should be included in the study only after it signs the informed consent form; the participant can quit the study whenever required, even when the study has not ended ( 7 ).

Peer-review: Externally peer-reviewed.

Author Contributions: Concept - C.Ö.Ç., A.D.; Design - C.Ö.Ç.; Supervision - A.D.; Resource - C.Ö.Ç., A.D.; Materials - C.Ö.Ç., A.D.; Analysis and/or Interpretation - C.Ö.Ç., A.D.; Literature Search - C.Ö.Ç.; Writing Manuscript - C.Ö.Ç.; Critical Review - A.D.; Other - C.Ö.Ç., A.D.

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: The authors declared that this study has received no financial support.

Home

Breadcrumbs

How to write a research plan.

At this point, you have a general idea of what your project will entail. It is now time to put together a more detailed plan on how to complete the project. In general, a research plan should outline the steps that will be taken to reach the project purpose or prove the hypothesis.

Usually a research plan is done before a project starts and after a hypothesis/purpose has been specified. For some competitions, like the Robot Design Competition, a formal plan may not have been written but it is useful to create one in hindsight to show what may have been an ad hoc plan. The contents of the plan will be the same but it will actually be easier to write.

The research plan should address the entire project, including any preparation that is necessary, such as building research apparatus or acquiring specialized research materials. It should present any experiments and how results will be evaluated. For an engineering project a research plan should outline the steps that will be taken. This may include preparation of scaffolding or other support or background requirements. It should describe the components and how they will be assembled or how they work together.

A research plan needs to be detailed . It is not sufficient to say, "I am going to make an airplane" or "I am going to see how a plant grows in dirt." The plan needs to indicate all the steps you plan on taking such that another person reading the research plan could repeat your process. A research plan outline can be a useful starting point.

The research plan must address safety and health issues. This means you must understand the materials and processes involved, as well as the risks and the way to minimize those risks. The risks should be enumerated as well as how they will be addressed. For example, if animals are used in an experiment, then their care, feeding, and housing after the experiment must all be addressed in the research plan.

Your mentor/adult-in-charge/supervisor will review your research plan and may suggest changes. Likewise, the research plan may have to be reviewed by a safety review committee before your experiments can begin. The more details in the plan, the better the chance that it will be approved without changes.

A research plan needs to be as long as necessary. It may fit on one page or many pages. 

  • A research plan is not a research paper and it does not need to include references unless these are related to the research plan.
  • A research plan MUST include any safety related information as well as any disposal procedures when necessary. This is usually the case for biological projects that detail with microorganisms, tissues, etc.

The following links provide a research plan outline as well as examples.

Table of Contents

  • Getting Started
  • Fair Overview
  • Privacy Policy
  • Club Documents
  • Fair Flyers
  • Fair Location
  • Robot Competition Registration
  • Robot Competition Judging
  • Robot Competition Webinars
  • Robot Competition Awards
  • Other Science fairs
  • Affiliated Fairs
  • Teams and Multiple Applications
  • Required Versus Optional
  • Precertification
  • Using Artificial Intelligence
  • Why register?
  • When to register
  • What to do after you register
  • No Team Projects for ISEF Events
  • Elementary project restrictions - Elementary Division not available after 2021
  • Restricted display items
  • Starting a project
  • When, Why and How to Register for the Fair
  • How to Write a Hypothesis/Purpose
  • Research Plan Outline
  • 2020 MSEF Senior Division Grand Prize Winner Research Plan
  • 2020 MSEF Senior Division Grand Prize Winner Abstract
  • 2020 MSEF Senior Division Runner Up Abstract
  • Precertification and ISEF Forms
  • Primary Project Image
  • Photograph and Figure Attribution
  • Research Paper
  • Slide Presentation
  • Online Judging
  • Video Presentation
  • Award Ceremony
  • What Judges Are Looking For
  • Follow on from Your Science Fair
  • Just the Basics
  • Integrating into Your Curriculumn
  • Spreading the News
  • Teacher Registration
  • Managing a school
  • Judge Qualifications
  • Judge Groups
  • Judge Registration
  • Judging Process
  • Special Awards
  • Bristol-Myers Squibb
  • Taiho Oncology
  • Church and Dwight
  • Educational Testing Service ETS
  • HostandStore.com
  • Integra Foundation
  • Otsuka America Pharmaceutical Inc.
  • Rider University
  • Sponsorship levels
  • List of Sponsors

APS

Scientists Propose Upgrades to Research-Methods Education for Psychology Students 

  • Advances in Methods and Practices in Psychological Science
  • Open Practices
  • Research Practice - Observer

research plan of science

Many undergraduate psychology courses fail to ensure students fully understand research design and analysis. An international team of psychological scientists have recommended some systemic steps to remedy that shortcoming.  

Researchers from the United Kingdom and Canada outline these recommendations in an article published in Advances in Methods and Practices in Psychological Science ( AMPPS ). Their recommendations are based on a survey of stakeholders, including instructors, undergraduate and graduate students, and nonacademic psychologists. The scientists, led by Robert Thibault of the Meta-Research Innovation Center at Stanford University, embarked on the study to help the British Psychological Society update its standards for accrediting psychology programs. But other accrediting bodies, as well as program directors and instructors, can draw on the findings to set standards for teaching research methods, they wrote.  

“Such initiatives could foster cohorts of graduates with an established set of competencies tuned for the contemporary world,” they concluded.  

The effort to upgrade instruction standards for research methods emanates from the rising focus on rigor and the adoption of open science practices. These advances are poorly reflected in psychology curricula, which have seen few updates over the past 2–3 decades, research has shown. One study , for example, found that few courses focus on effect sizes, confidence intervals, and alternatives to null-hypothesis significance testing, which has shortcomings that many scientists blame for the replication problems in psychological science. 

“Taken together, the time is ripe to modernize the teaching of quantitative and qualitative research methods in psychology programs,” the authors said.  

For the project, Thibault and his collaborators used the Delphi technique—a structured method of eliciting and aggregating opinions. They collected anonymous responses from more than 100 stakeholders to determine the level of consensus around methods instruction. The participants, including individuals from more than 50 universities in the United Kingdom, were asked their opinions about specific content to teach as well as approaches to teaching it. The aim was to address the knowledge and skills gaps that lead to irreproducible research and to ensure graduates develop data skills that are useful in nonacademic careers. 

The recommendations for methods instruction are as follows: 

  • Require a strong understanding of data and quantitative data skills. 
  • Emphasize general skills in research design. 
  • Prioritize a foundation in descriptive statistics. 
  • Provide students with a framework for critically assessing research claims. 
  • Raise the prominence of qualitative methods in accreditation standards. 
  • Require that parameter-estimation techniques, such as confidence intervals and effect sizes, be taught alongside significance testing. 
  • Prioritize the teaching of foundational skills in research methods.  
  • Promote content that shows how research-methods skills can transfer beyond academia. 
  • Focus on fewer skills in greater depth and offer optional models for advanced methods skills.  

Thibault and his team cited limitations with their work, including sparse participation by students, nonacademic psychologists, and those who use qualitative methods. But they noted that their use of the Delphi technique allowed them to garner a robust understanding of participants’ opinions about instruction in research methods.  

Feedback on this article? Email  [email protected]  or login to comment .

Reference  

Thibault, R. T., Bailey-Rodriguez, D., Bartlett, J. E., Blazey, P., Green, R. J., Pownall, M., & Munafo, M. R. (2024). A Delphi study to strengthen research-methods training in undergraduate psychology programs.  Advances in Methods and Practices in Psychological Science , 7 (1). https://doi.org/10.1177/25152459231213808  

APS regularly opens certain online articles for discussion on our website. Effective February 2021, you must be a logged-in APS member to post comments. By posting a comment, you agree to our Community Guidelines and the display of your profile information, including your name and affiliation. Any opinions, findings, conclusions, or recommendations present in article comments are those of the writers and do not necessarily reflect the views of APS or the article’s author. For more information, please see our Community Guidelines .

Please login with your APS account to comment.

research plan of science

Multilab Replication Challenges Long-held Theories on Cognitive Dissonance

One of the foremost models that scientists use to measure the effects of cognitive dissonance may have some deficiencies, a new multilab registered replication indicates.

research plan of science

When Things Don’t Go According to Plan

Methodologists have embraced preregistration as a way to prevent questionable research practices and add transparency to scientific studies. But many researchers end up deviating from those preregistered plans, and those deviations aren’t reported systematically, if at all.

research plan of science

Seven Tips for Conducting Research With Low-Income Participants

Psychological researchers face a number of methodological and practical challenges when collecting data on low socio-economic communities. A team of scientists offer suggestions on overcoming those obstacles.

Privacy Overview

How technology is reinventing education

Stanford Graduate School of Education Dean Dan Schwartz and other education scholars weigh in on what's next for some of the technology trends taking center stage in the classroom.

research plan of science

Image credit: Claire Scully

New advances in technology are upending education, from the recent debut of new artificial intelligence (AI) chatbots like ChatGPT to the growing accessibility of virtual-reality tools that expand the boundaries of the classroom. For educators, at the heart of it all is the hope that every learner gets an equal chance to develop the skills they need to succeed. But that promise is not without its pitfalls.

“Technology is a game-changer for education – it offers the prospect of universal access to high-quality learning experiences, and it creates fundamentally new ways of teaching,” said Dan Schwartz, dean of Stanford Graduate School of Education (GSE), who is also a professor of educational technology at the GSE and faculty director of the Stanford Accelerator for Learning . “But there are a lot of ways we teach that aren’t great, and a big fear with AI in particular is that we just get more efficient at teaching badly. This is a moment to pay attention, to do things differently.”

For K-12 schools, this year also marks the end of the Elementary and Secondary School Emergency Relief (ESSER) funding program, which has provided pandemic recovery funds that many districts used to invest in educational software and systems. With these funds running out in September 2024, schools are trying to determine their best use of technology as they face the prospect of diminishing resources.

Here, Schwartz and other Stanford education scholars weigh in on some of the technology trends taking center stage in the classroom this year.

AI in the classroom

In 2023, the big story in technology and education was generative AI, following the introduction of ChatGPT and other chatbots that produce text seemingly written by a human in response to a question or prompt. Educators immediately worried that students would use the chatbot to cheat by trying to pass its writing off as their own. As schools move to adopt policies around students’ use of the tool, many are also beginning to explore potential opportunities – for example, to generate reading assignments or coach students during the writing process.

AI can also help automate tasks like grading and lesson planning, freeing teachers to do the human work that drew them into the profession in the first place, said Victor Lee, an associate professor at the GSE and faculty lead for the AI + Education initiative at the Stanford Accelerator for Learning. “I’m heartened to see some movement toward creating AI tools that make teachers’ lives better – not to replace them, but to give them the time to do the work that only teachers are able to do,” he said. “I hope to see more on that front.”

He also emphasized the need to teach students now to begin questioning and critiquing the development and use of AI. “AI is not going away,” said Lee, who is also director of CRAFT (Classroom-Ready Resources about AI for Teaching), which provides free resources to help teach AI literacy to high school students across subject areas. “We need to teach students how to understand and think critically about this technology.”

Immersive environments

The use of immersive technologies like augmented reality, virtual reality, and mixed reality is also expected to surge in the classroom, especially as new high-profile devices integrating these realities hit the marketplace in 2024.

The educational possibilities now go beyond putting on a headset and experiencing life in a distant location. With new technologies, students can create their own local interactive 360-degree scenarios, using just a cell phone or inexpensive camera and simple online tools.

“This is an area that’s really going to explode over the next couple of years,” said Kristen Pilner Blair, director of research for the Digital Learning initiative at the Stanford Accelerator for Learning, which runs a program exploring the use of virtual field trips to promote learning. “Students can learn about the effects of climate change, say, by virtually experiencing the impact on a particular environment. But they can also become creators, documenting and sharing immersive media that shows the effects where they live.”

Integrating AI into virtual simulations could also soon take the experience to another level, Schwartz said. “If your VR experience brings me to a redwood tree, you could have a window pop up that allows me to ask questions about the tree, and AI can deliver the answers.”

Gamification

Another trend expected to intensify this year is the gamification of learning activities, often featuring dynamic videos with interactive elements to engage and hold students’ attention.

“Gamification is a good motivator, because one key aspect is reward, which is very powerful,” said Schwartz. The downside? Rewards are specific to the activity at hand, which may not extend to learning more generally. “If I get rewarded for doing math in a space-age video game, it doesn’t mean I’m going to be motivated to do math anywhere else.”

Gamification sometimes tries to make “chocolate-covered broccoli,” Schwartz said, by adding art and rewards to make speeded response tasks involving single-answer, factual questions more fun. He hopes to see more creative play patterns that give students points for rethinking an approach or adapting their strategy, rather than only rewarding them for quickly producing a correct response.

Data-gathering and analysis

The growing use of technology in schools is producing massive amounts of data on students’ activities in the classroom and online. “We’re now able to capture moment-to-moment data, every keystroke a kid makes,” said Schwartz – data that can reveal areas of struggle and different learning opportunities, from solving a math problem to approaching a writing assignment.

But outside of research settings, he said, that type of granular data – now owned by tech companies – is more likely used to refine the design of the software than to provide teachers with actionable information.

The promise of personalized learning is being able to generate content aligned with students’ interests and skill levels, and making lessons more accessible for multilingual learners and students with disabilities. Realizing that promise requires that educators can make sense of the data that’s being collected, said Schwartz – and while advances in AI are making it easier to identify patterns and findings, the data also needs to be in a system and form educators can access and analyze for decision-making. Developing a usable infrastructure for that data, Schwartz said, is an important next step.

With the accumulation of student data comes privacy concerns: How is the data being collected? Are there regulations or guidelines around its use in decision-making? What steps are being taken to prevent unauthorized access? In 2023 K-12 schools experienced a rise in cyberattacks, underscoring the need to implement strong systems to safeguard student data.

Technology is “requiring people to check their assumptions about education,” said Schwartz, noting that AI in particular is very efficient at replicating biases and automating the way things have been done in the past, including poor models of instruction. “But it’s also opening up new possibilities for students producing material, and for being able to identify children who are not average so we can customize toward them. It’s an opportunity to think of entirely new ways of teaching – this is the path I hope to see.”

University of South Florida

Main Navigation

Researcher in lab

USF research expenditures up 14%, surging to more than $461 million

  • February 13, 2024

Research and Innovation

By Tina Meketa , University Communications and Marketing

From advancements in health care to cybersecurity to K-12 education, the University of South Florida’s research enterprise continues to achieve tremendous growth.

USF’s research spending rose 14% in fiscal year 2023 to more than $461 million. Spending on awards funded by federal agencies, such as the National Science Foundation, National Institutes of Health and the Department of Defense, increased to nearly 53% of USF’s total, up from 46% five years ago. 

Two researchers in lab

Shiva Swamynathan and Yiquin Du, USF Health Morsani College of Medicine [Photo by Allison Long, USF Health]

“Our growing research enterprise allows the University of South Florida to make an even greater impact in solving challenges, improving lives and creating a healthier future for the Tampa Bay region, state of Florida and beyond,” USF President Rhea Law said. “This significant year-over-year increase in research activity is a testament to our world-class faculty who continue to be at the forefront of new discoveries and innovations.”

USF’s position as one of the nation’s most research-intensive institutions was a significant factor in its invitation to join the prestigious Association of American Universities in 2023.  

“The remarkable increase in our research expenditures is a powerful indicator of the University of South Florida’s rapidly expanding research enterprise,” said Sylvia Wilson Thomas, USF vice president for research & innovation. “Driven by national and international grand challenges, USF researchers pursue critical knowledge that translates into real-world solutions.”

Students in cybersecurity classroom

[Photo by Torie Doll, University Communications and Marketing]

The increase is reflected in USF’s response to the National Science Foundation’s annual Higher Education Research and Development Survey, which serves as the primary source of information about the amount of research conducted by U.S. colleges and universities. While the NSF does not release a list of how universities compare until later in the year, based on last year’s rankings, $461 million would have placed USF No. 2 in Florida and No. 41 nationally among public universities.

Compared to last year, USF’s expenditures nearly doubled in computer and information sciences from $9.5 million to $18.8 million, largely driven by burgeoning cybersecurity programs. In collaboration with Cyber Florida, James Welsh, director of the Florida Center for Instructional Technology, served as principal investigator of the Cyber/IT Pathways Project – a state-funded initiative to bolster the cybersecurity workforce through industry certifications, internships and educational materials. 

"Pathways projects had a direct and positive impact on more than 27,000 Floridians, but the real value of the investment is in the connections created between cybersecurity educators at institutions at all levels across the state, sharing best practices and innovative strategies directly with other educators," Welsh said.

Jeffrey Krischer

Jeffrey Krischer [Photo by Allison Long, USF Health]

Engineering research spending jumped 22% to $62 million with new initiatives in bioengineering, human mobility and defense research. Health sciences and social sciences also experienced double-digit percentage increases of 14% and 12%, respectively.

At $42 million, the USF Health Diabetes and Endocrinology Center generated the most research expenditures of any unit at USF. The center coordinates an international network of university medical centers and health care providers to study the causes of Type 1 diabetes and strategies for its prevention, resulting in the first-ever drug approved by the FDA for diabetes prevention. Even more exciting results are coming as the center supports leading-edge research in genomics, proteomics, metabolomics and the largest microbiome study ever conducted in humans. 

Jose Castillo

[Photo courtesy of Associate Professor Jose Castillo]

“The result of our work together with physicians and scientists from all over the world has made a profound difference in many people’s lives,” said center Director Jeffrey Krischer. 

The Institute for School-Community Partnerships in the College of Education, led by Associate Professor Jose Castillo, utilized $17 million in research expenditures to implement several impactful projects, such as comprehensive training and technical assistance on literacy instruction, mental health services and assistive technology for students with disabilities. These supports were designed to improve the academic, social and overall well-being of students across the state of Florida. 

Return to article listing

MyUSF , National Science Foundation , Research and Innovation , Tina Meketa

News Archive

Learn more about USF's journey to Preeminence by viewing Newsroom articles from past years.

USF in the News

New york times: it’s not time for our troops to leave the middle east.

February 14, 2024

USA Today: A Florida earthquake? Really? Initial skepticism gives way to science. Here's why

February 12, 2024

Fox Weather: Sargassum seaweed 2024 forecast

February 7, 2024

New York Times: Six Spongy Sea Creatures Suggest Warming Might Be Worse Than Thought

February 5, 2024

More USF in the News

NASA Logo

Sense the Solar Eclipse with NASA’s Eclipse Soundscapes Project

When darkness sweeps across the landscape during a total solar eclipse, unusual things start happening. Fooled by the false dusk, birds stop singing, crickets start chirping, and bees return to their hives.

Reports of these atypical animal behaviors date back centuries, but the effects of an eclipse on plant and animal life are not fully understood. So, on April 8, 2024, the NASA-funded Eclipse Soundscapes Project will collect the sights and sounds of a total solar eclipse with help from interested members of the public to better understand how an eclipse affects different ecosystems.

“Eclipses are often thought of as a visual event – something that you see,” said Kelsey Perrett, Communications Coordinator with the Eclipse Soundscapes Project. “We want to show that eclipses can be studied in a multi-sensory manner, through sound and feeling and other forms of observation.”

A total solar eclipse occurs when the Moon passes directly in front of the Sun, blocking its light from reaching parts of the planet. In areas where the Sun’s light is completely blocked – known as the path of totality – it looks as if dusk has fallen, temperatures drop, and some stars become visible. These changes can trick animals into altering their usual daytime behaviors. A total solar eclipse will pass over the heads of over 30 million people in North America on April 8, 2024, providing the perfect opportunity for a large-scale citizen science project.

The Eclipse Soundscapes Project aims to replicate a similar study conducted by American scientist William M. Wheeler following a 1932 total solar eclipse that passed over the northeast reaches of Canada and the United States. The near-century-old study captured almost 500 observations from the public.

The Eclipse Soundscapes Project hopes modern tools will replicate and expand upon that study to better understand animal and insect behavior. This will be achieved through multisensory observations, such as audio recordings and written accounts of what is seen, heard, or felt during the eclipse. The project, which is particularly interested in learning about cricket behavior, aims to answer questions like do nocturnal and diurnal animals act differently or become more or less vocal during a solar eclipse?

“The more audio data and observations we have, the better we can answer these questions,” Perrett said. “Contributions from participatory scientists will allow us to drill down into specific ecosystems and determine how the eclipse may have impacted each of them.”

A close-up profile of an orange and black grasshopper on a leaf.

The Eclipse Soundscape project invites people to become involved with the study at all levels – from learning about eclipses online, to collecting multisensory observations and audio data, to analyzing the data – and in all locations, whether they’re on the path of totality or not. The project is open to people of all backgrounds and abilities. All project roles have been designed with accessibility in mind to invite people who are blind or have low vision to participate alongside their sighted peers. 

People on or near the path of totality can participate as “Data Collectors” by using an AudioMoth device, a low-cost audio recording device called equipped with a micro-SD card, to capture the sounds of an eclipse. People can also participate as “Observers” by writing down their multisensory observations and submitting them to the project website after the eclipse. Anyone with an internet connection, can participate as an “Apprentice” by learning about eclipses or as a “Data Analyst” to help analyze the audio data after the eclipse. After completing an Eclipse Soundscapes role, a downloadable certificate will be available.

A plastic bag with a green device that looks similar to a floppy disk is attached to a tree branch with a zip tie. There is a label on the bag that says Science Experiment in Progress and instructions not to move the device.

“When it comes down to it, answering our science questions about how eclipses impact life on Earth depends entirely on the data that people volunteer to contribute,” Perrett said. “Our participants, including our project partners and facilitators, allow us to span the entire eclipse path and collect way more data than would be possible for just one small team.”

To learn more about the project and how to become involved, visit: https://eclipsesoundscapes.org/

By  Mara Johnson-Groh

NASA’s Goddard Space Flight Center , Greenbelt, Md.

Related Terms

  • 2024 Solar Eclipse
  • Citizen Science
  • Get Involved
  • Goddard Space Flight Center
  • Heliophysics
  • Heliophysics Division
  • Science & Research
  • Science Mission Directorate
  • Skywatching
  • Solar Eclipses

Explore More

research plan of science

Solver Spotlight: Shobhana Gupta

Shobhana Gupta is a physician scientist and currently serves as the Open Innovation and Community Applications manager with Earth Science Division’s Applied Sciences Program at NASA Headquarters. Shobhana manages crowdsourcing activities including prize competitions to invite talents and experiences outside of the NASA community for the discovery and development of applications of Earth observations for decision-making. She […]

research plan of science

Hubble Views a Massive Star Forming

research plan of science

Spot the King of Planets: Observe Jupiter

Jupiter is easy to observe, and well-documented by astronomers. Learn more about the King of the Planets in February's mid-month article!

Discover More Topics From NASA

2024 Total Eclipse

research plan of science

Types of Solar Eclipses

Eclipses Stories

research plan of science

U.S. flag

An official website of the United States government

Here's how you know

Official websites use .gov A .gov website belongs to an official government organization in the United States.

Secure .gov websites use HTTPS A lock ( ) or https:// means you’ve safely connected to the .gov website. Share sensitive information only on official, secure websites.

Home

  •   Facebook
  •   Twitter
  •   Linkedin
  •   Digg
  •   Reddit
  •   Pinterest
  •   Email

Latest Earthquakes |    Live WebChat   Share Social Media  

FORT Research Wildlife Biologist Kate Schoenecker will represent the U.S. Geological Survey, as one of five DOI agencies participating in the DOI Bison Working Group Shared Stewardship meetings

The envisioned Shared Stewardship Strategy seeks to establish a comprehensive framework for American bison restoration, including strengthening long-term bison conservation partnerships. Multiple Tribal Nations will also be participating in these in-person discussions. The meeting will take place in Missoula, Montana from February 13–15, 2024.

Click image for full description and details.

Until the 1800s, American bison numbered in the tens of millions functioning as a keystone species of grassland ecosystems in the West, and a critical resource and cultural touchstone for many Native American Tribes. Today, there are a little over 350,000 bison living in the United States, most of which are managed by commercial enterprises. Of that population, only 15,000 bison are considered wild and free-roaming, 11,000 of which are managed by the Department of the Interior (DOI). 

The Bison Working Group (BWG) is an interagency collaboration between bison managers and researchers at five federal DOI agencies — the National Park Service, the U.S. Fish and Wildlife Service, the Bureau of Indian Affairs, the Bureau of Land Management, and the U.S. Geological Survey — with five main focal areas (see right): wild, healthy bison herds; genetic conservation; shared stewardship; ecological restoration; and cultural restoration.  

In Secretary's Order 3410 "Restoration of American Bison and the Prairie Grasslands", DOI leadership created a framework for a Shared Stewardship Plan, in which the BWG collaborates with or supports Tribes, states, landowners, and non-governmental organizations to improve bison herd health and populations on federal and tribal lands. This Shared Stewardship Plan, also informed by Action 2 in the "DOI Bison Conservation Initiative 2020 ", emphasizes the importance of partnerships in effective bison conservation and population restoration.

   

Kate Schoenecker is a Research Wildlife Biologist and leader of the Ungulate Ecology Research Group at the USGS Fort Collins Science Center, as well as a member of the BWG. She is an expert in ungulate ecology and population monitoring, including over a decade of research on bison grazing behavior and conservation. For more information, please contact Kate at [email protected]  

Related Content

Bison in Yellowstone National Park.

Bison Conservation

Image: Bison Herd Grazing

Where the Bison Roam: Public-Private Partnership Supports Potential Restoration

Elk in Colorado

Elk and Bison Grazing Ecology in the San Luis Valley, Colorado

Get our news.

These items are in the RSS feed format (Really Simple Syndication) based on categories such as topics, locations, and more. You can install and RSS reader browser extension, software, or use a third-party service to receive immediate news updates depending on the feed that you have added. If you click the feed links below, they may look strange because they are simply XML code. An RSS reader can easily read this code and push out a notification to you when something new is posted to our site.

Biology News

Ecosystems Mission Area News

Ecosystems News

Fort Collins Science Center News

Rocky Mountain Region News

We've detected unusual activity from your computer network

To continue, please click the box below to let us know you're not a robot.

Why did this happen?

Please make sure your browser supports JavaScript and cookies and that you are not blocking them from loading. For more information you can review our Terms of Service and Cookie Policy .

For inquiries related to this message please contact our support team and provide the reference ID below.

IMAGES

  1. Research Plan for Science Fair by Regaele Olarte

    research plan of science

  2. What Is A Research Plan For Science Fair

    research plan of science

  3. FREE 35+ Sample Plan Templates in PDF

    research plan of science

  4. How To Write A Research Plan For Science Fair

    research plan of science

  5. What Is A Research Plan For Science Fair

    research plan of science

  6. research plan template jhms

    research plan of science

VIDEO

  1. lesson plan science (std-6) #lesson #lessonplan #science #education

  2. Field Study 2_Activity 1_Writing an Action Research Plan

  3. 10/28/2011 Research Statements, Faculty Job Applications, and the Faculty Selection Process

  4. Science Research Session: Hyporuliad

  5. System Of A Down

  6. PHD Student ka asli dukh😭 #phdlife #phdthesis #phdscholarship #phd_entrance #jagritipahwa

COMMENTS

  1. Writing a Research Plan

    The research plan, however, serves another, very important function: It contributes to your development as a scientist. Your research plan is a map for your career as a research science professional. As will become apparent later in this document, one of the functions of a research plan is to demonstrate your intellectual vision and aspirations.

  2. Writing a Science Fair Project Research Plan

    To make a background research plan — a roadmap of the research questions you need to answer — follow these steps: Identify the keywords in the question for your science fair project. Brainstorm additional keywords and concepts. Use a table with the "question words" (why, how, who, what, when, where) to generate research questions from your ...

  3. Write Your Research Plan

    Review and Finalize Your Research Plan; Abstract and Narrative; Research Plan Overview and Your Approach. Your application's Research Plan has two sections: Specific Aims—a one-page statement of your objectives for the project. Research Strategy—a description of the rationale for your research and your experiments in 12 pages for an R01.

  4. Research Plan

    A research plan is a framework that shows how you intend to approach your topic. The plan can take many forms: a written outline, a narrative, a visual/concept map or timeline. It's a document that will change and develop as you conduct your research. Components of a research plan. 1. Research conceptualization - introduces your research question.

  5. How To Write a Research Plan (With Template and Examples)

    If you want to learn how to write your own plan for your research project, consider the following seven steps: 1. Define the project purpose. The first step to creating a research plan for your project is to define why and what you're researching. Regardless of whether you're working with a team or alone, understanding the project's purpose can ...

  6. How to Write a Research Proposal

    A research plan helps you, the researcher, organize your thoughts. On the other hand, a dissertation proposal or research proposal aims to convince others (e.g., a supervisor, a funding body, or a dissertation committee) that your research topic is relevant and worthy of being conducted.

  7. Creating a Research Plan

    Creating a Research Plan. Before starting work on a science project, a research plan should be created. While many researchers merely do this "in their head", it should be formally contained within a document. The research plan describes many aspects of the project. It will help both the researchers and mentors understand the overall ...

  8. PDF Science Project Detailed Research Plan

    Choose a title that identifies the content of your project. The title can include the nature of the study, the species used, and the place of field studies. It should reflect the principal objective of the investigation. Hypothesis: Based on your reading and information research, organize everything you have discovered, and then make an ...

  9. How to Write a Research Plan for a Science Project

    Step 6. Formalize a research plan. Make it easy to read and include the following sections: questions, significance, background and materials and methods. Possible problems may be its own section or part of the materials and methods section. Follow school guidelines regarding accompanying paperwork and the order of your sections.

  10. PDF Writing a Science Fair Project Research Plan

    To make a background research plan — a roadmap of the research questions you need to answer — follow these steps: 1) Identify the keywords in the question for your science fair project. Brainstorm additional keywords and concepts. 2) Use a table with the "question words" (why, how, who, what, when, where) to generate research questions from ...

  11. Writing a Scientific Research Project Proposal

    Abstract: This is a brief (300-500 words) summary that includes the research question, your rationale for the study, and any applicable hypothesis. You should also include a brief description of your methodology, including procedures, samples, instruments, etc. Introduction: The opening paragraph of your research proposal is, perhaps, the most ...

  12. How to Write a Research Plan: A Step by Step Guide

    A research plan is a documented overview of a project in its entirety, from end to end. It details the research efforts, participants, and methods needed, along with any anticipated results. It also outlines the project's goals and mission, creating layers of steps to achieve those goals within a specified timeline.

  13. Writing the Research Plan for Your Academic Job Application

    Good science, written well, makes a good research plan. As you craft and refine your research plan, keep the following strategies, as well as your audience in mind: Begin the document with an abstract or executive summary that engages a broad audience and shows synergies among your projects. This should be one page or less, and you should ...

  14. Writing the Research Plan

    In science, many things have changed since 2002, when "Writing a Research Plan" was written, but many things have also stayed the same. Here's one thing that hasn't changed: It was hard to get a tenure-track faculty position 12 years ago, and it's still hard today. In fact, with the number of tenure-track faculty positions remaining flat and ...

  15. How to prepare a Research Proposal

    A research proposal is intended to convince others that you have a worthwhile research project and that you have the competence and the work-plan to complete it. Broadly the research proposal must address the following questions regardless of your research area and the methodology you choose: What you plan to accomplish, why do you want to do ...

  16. Developing a Five-Year Research Plan

    Presented by Cathy Binger. First we're going to talk about what a research plan is, why it's important to write one, and why five years—why not one year, why not ten years. So we'll do some of those basic things, then Liza is going to get down and dirty into the nitty-gritty of "now what" how do I go about writing that research plan.

  17. How to plan a research project

    Starr reviews the 'research triad', consisting of the interlinked considerations of formulating a question, selecting relevant theories and applying appropriate methods. The full text of the article, published in the scholarly journal Conflict Management and Peace Science, is available, free of charge, via this link.

  18. How to Prepare a PhD Research Plan/Schedule?

    A PhD research plan or schedule can be prepared using the GANTT chart which includes a month, semester or year-wise planning of the entire PhD research work. First, enlist goals and objectives. It's not about your research objective enlisted in your proposal. I'm talking about the objectives of your PhD.

  19. What is Scientific Research and How Can it be Done?

    Research conducted for the purpose of contributing towards science by the systematic collection, interpretation and evaluation of data and that, too, in a planned manner is called scientific research: a researcher is the one who conducts this research. The results obtained from a small group through scientific studies are socialised, and new ...

  20. How to Write a Research Plan

    Likewise, the research plan may have to be reviewed by a safety review committee before your experiments can begin. The more details in the plan, the better the chance that it will be approved without changes. A research plan needs to be as long as necessary. It may fit on one page or many pages. A research plan is not a research paper and it ...

  21. Science Fair Research Plan

    The Research Plan provides a detailed description of the rationale for your project, your hypothesis/goal, procedure or engineering design and expected outcomes. Students using humans/vertebrates, or potentially hazardous biological agents, chemicals, or devices must include additional information as well. Carefully read the ISEF guidelines for ...

  22. PDF Research Plan (Example)

    Intel International Science and Engineering Fair ". On the next page, click again on " Intel International Science and Engineering Fair ". Scroll down to"Rules, Forms, and . Resources". Click on " Forms ". Scroll down to "Form 1A: Student Checklist/ "Research Plan". • May be written stepwise, in sections, or in phases ...

  23. Scientists Propose Upgrades to Research-Methods Education for

    The effort to upgrade instruction standards for research methods emanates from the rising focus on rigor and the adoption of open science practices. These advances are poorly reflected in psychology curricula, which have seen few updates over the past 2-3 decades, research has shown.

  24. How technology is reinventing K-12 education

    Study finds public pension plans on shaky ground. New research calls attention to a huge funding gap and growing risk exposure, raising alarms about the long-term viability of government pensions.

  25. USF research expenditures up 14%, surging to more than $461 million

    From advancements in health care to cybersecurity to K-12 education, the University of South Florida's research enterprise continues to achieve tremendous growth, especially with funding from federal agencies such as the National Science Foundation, National Institutes of Health and the Department of Defense.

  26. Sense the Solar Eclipse with NASA's Eclipse Soundscapes Project

    When darkness sweeps across the landscape during a total solar eclipse, unusual things start happening. Fooled by the false dusk, birds stop singing, crickets start chirping, and bees return to their hives. Reports of these atypical animal behaviors date back centuries, but the effects of an eclipse on plant and animal life are not fully […]

  27. FORT Research Wildlife Biologist Kate Schoenecker will represent the U

    Kate Schoenecker is a Research Wildlife Biologist and leader of the Ungulate Ecology Research Group at the USGS Fort Collins Science Center, as well as a member of the BWG. She is an expert in ungulate ecology and population monitoring, including over a decade of research on bison grazing behavior and conservation.

  28. US to Launch $5 Billion Research Hub in China Chips Race

    President Joe Biden's administration plans to launch a $5 billion semiconductor research consortium to bolster chip design and hardware innovation in the US and counter China's efforts to ...

  29. PDF Science FairBackground Project Research Plan

    Background research is necessary so that you know how to design and understand your experiment. To make a background research plan—a roadmap of the research questions you need to answer—follow these steps: 1. Identify the keywords in the question for your science fair project. Brainstorm additional keywords and concepts.